947 resultados para Glycopeptides, synthetic vaccines, mucin MUC1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Little is known on the impact of travel vaccinations during pregnancy on child outcomes, in particular on the long-term psychomotor development. The objectives of the study were (1) to estimate the rate of premature births, congenital abnormalities, and mental and physical development problems of children born from mothers who had been vaccinated during pregnancy and (2) to compare these rates with those of children whose mothers had not been vaccinated during pregnancy. METHODS: Longitudinal study including (1) retrospectively pregnant women having attended our travel clinic before (vaccinated) and (2) prospectively mothers attending our clinic (nonvaccinated). We performed phone interviews with mothers vaccinated during pregnancy, up to 10 years before, and face-to-face interviews with nonvaccinated age-matched mothers, ie, women attending the travel clinic who had one child of about the same age as the one of the case to compare child development between both groups. RESULTS: Fifty-three women vaccinated during pregnancy were interviewed as well as 53 nonvaccinated ones. Twenty-eight (53%) women received their vaccination during the first trimester. The most frequent vaccine administered was hepatitis A (55% of the cases), followed by di-Te (34%), IM poliomyelitis (23%), yellow fever (12%), A-C meningitis (8%), IM typhoid (4%), and oral poliomyelitis (4%). Children were followed for a range of 1 to 10 years. Rates of premature births were 5.7% in both groups; congenital abnormalities were 1.9% in the vaccinated cohort versus 5.7% in the nonvaccinated one; children took their first steps at a median age of 12 months in both cohorts; among schoolchildren, 5% of the vaccinated cohort versus 7.7% of the nonvaccinated attended a lower level or a specialized school. CONCLUSION: In this small sample size, there was no indication that usual travel vaccinations, including the yellow fever one, had deleterious effect on child outcome and development

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccination is the method of choice for the prevention of influenza infection. However, the quantity of the antigen available, especially in the case of pandemics, often fails to meet the global demand. However, improved adjuvants can overcome this problem. Preliminary results obtained in this study revealed that one year after a single subcutaneous immunisation with influenza A H3N2 virus in an oil-based carrier, VaxcineTM, outbreed mice produced a high immunoglobulin G response that lasted for up to one year and exhibited less variation in titre compared with the response of the control group treated with alum. The haemagglutination-inhibition titres induced by VaxcineTM were also higher than those generated by alum. These data indicate that VaxcineTM is a good adjuvant candidate for seasonal influenza vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to demonstrate the usefulness of an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of pulmonary tuberculosis (PTB) and extrapulmonary TB (EPTB). This assay used 20 amino acid-long, non-overlapped synthetic peptides that spanned the complete Mycobacterium tuberculosis ESAT-6 and Ag85A sequences. The validation cohort consisted of 1,102 individuals who were grouped into the following five diagnostic groups: 455 patients with PTB, 60 patients with EPTB, 40 individuals with non-EPTB, 33 individuals with leprosy and 514 healthy controls. For the PTB group, two ESAT-6 peptides (12033 and 12034) had the highest sensitivity levels of 96.9% and 96.2%, respectively, and an Ag85A-peptide (29878) was the most specific (97.4%) in the PTB groups. For the EPTB group, two Ag85A peptides (11005 and 11006) were observed to have a sensitivity of 98.3% and an Ag85A-peptide (29878) was also the most specific (96.4%). When combinations of peptides were used, such as 12033 and 12034 or 11005 and 11006, 99.5% and 100% sensitivities in the PTB and EPTB groups were observed, respectively. In conclusion, for a cohort that consists entirely of individuals from Venezuela, a multi-antigen immunoassay using highly sensitive ESAT-6 and Ag85A peptides alone and in combination could be used to more rapidly diagnose PTB and EPTB infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prevention of Trypanosoma cruzi infection in mammals likely depends on either prevention of the invading trypomastigotes from infecting host cells or the rapid recognition and killing of the newly infected cells byT. cruzi-specific T cells. We show here that multiple rounds of infection and cure (by drug therapy) fails to protect mice from reinfection, despite the generation of potent T cell responses. This disappointing result is similar to that obtained with many other vaccine protocols used in attempts to protect animals from T. cruziinfection. We have previously shown that immune recognition ofT. cruziinfection is significantly delayed both at the systemic level and at the level of the infected host cell. The systemic delay appears to be the result of a stealth infection process that fails to trigger substantial innate recognition mechanisms while the delay at the cellular level is related to the immunodominance of highly variable gene family proteins, in particular those of the trans-sialidase family. Here we discuss how these previous studies and the new findings herein impact our thoughts on the potential of prophylactic vaccination to serve a productive role in the prevention of T. cruziinfection and Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This randomised, double-blind, multicentre study with children nine-23 months old evaluated the immunogenicity of yellow fever (YF) vaccines prepared with substrains 17DD and 17D-213/77. YF antibodies were tittered before and 30 or more days after vaccination. Seropositivity and seroconversion were analysed according to the maternal serological status and the collaborating centre. A total of 1,966 children were randomised in the municipalities of the states of Mato Grosso do Sul, Minas Gerais and São Paulo and blood samples were collected from 1,714 mothers. Seropositivity was observed in 78.6% of mothers and 8.9% of children before vaccination. After vaccination, seropositivity rates of 81.9% and 83.2%, seroconversion rates of 84.8% and 85.8% and rates of a four-fold increase over the pre-vaccination titre of 77.6% and 81.8% were observed in the 17D-213/77 and 17DD subgroups, respectively. There was no association with maternal immunity. Among children aged 12 months or older, the seroconversion rates of 69% were associated with concomitant vaccination against measles, mumps and rubella. The data were not conclusive regarding the interference of maternal immunity in the immune response to the YF vaccine, but they suggest interference from other vaccines. The failures in seroconversion after vaccination support the recommendation of a booster dose in children within 10 years of the first dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sentinel or tumor-draining lymph node (tdLN) serves as a metastatic niche for many solid tumors and is altered via tumor-derived factors that support tumor progression and metastasis. tdLNs are often removed surgically, and therapeutic vaccines against tumor antigens are typically administered systemically or in non-tumor-associated sites. Although the tdLN is immune-suppressed, it is also antigen experienced through drainage of tumor-associated antigens (TAA), so we asked whether therapeutic vaccines targeting the tdLN would be more or less effective than those targeting the non-tdLN. Using LN-targeting nanoparticle (NP)-conjugate vaccines consisting of TAA-NP and CpG-NP, we compared delivery to the tdLN versus non-tdLN in two different cancer models, E.G7-OVA lymphoma (expressing the nonendogenous TAA ovalbumin) and B16-F10 melanoma. Surprisingly, despite the immune-suppressed state of the tdLN, tdLN-targeting vaccination induced substantially stronger cytotoxic CD8+ T-cell responses, both locally and systemically, than non-tdLN-targeting vaccination, leading to enhanced tumor regression and host survival. This improved tumor regression correlated with a shift in the tumor-infiltrating leukocyte repertoire toward a less suppressive and more immunogenic balance. Nanoparticle coupling of adjuvant and antigen was required for effective tdLN targeting, as nanoparticle coupling dramatically increased the delivery of antigen and adjuvant to LN-resident antigen-presenting cells, thereby increasing therapeutic efficacy. This work highlights the tdLN as a target for cancer immunotherapy and shows how its antigen-experienced but immune-suppressed state can be reprogrammed with a targeted vaccine yielding antitumor immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many vaccines have been very successful. They can protect from many different infectious diseases, and thus contribute enormously to public health. The majority of successful vaccines induce neutralizing antibodies, which are essential for protection from disease, by the inhibition of microbe invasion and spread through the body, via extracellular compartments, or by neutralization of toxins. In contrast to infectious diseases, the pathological process in cancer is primarily intracellular. Immunity to cancer depends mainly on T cells which are capable of identifying and eliminating abnormal cells, via recognition of peptide antigens presented by major histocompatibility complex molecules at the cell surface. In some instances, tumor-specific antibodies can contribute to immune defense against cancer. Unfortunately, for many solid tumors (including melanoma), this mechanism is insufficient. Nevertheless, the search for cancer-neutralizing antibodies continues, similar to, e.g., HIV neutralizing antibodies. In this chapter, we focus on the development of T cell vaccines, a great challenge but also a promising approach as a new therapy for melanoma, other cancers, and intracellular pathogens

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy of melanoma is aimed to mobilize cytolytic CD8+ T cells playing a central role in protective immunity. Despite numerous clinical vaccine trials, only few patients exhibited strong antigen-specific T-cell activation, stressing the need to improve vaccine strategies. For a rational development, we propose to focus on molecularly defined vaccine components, and evaluate their immunogenicity with highly reproducible and standardized methods for ex vivo immune monitoring. Careful immunogenicity comparison of vaccine formulations in phase I/II studies allow to select optimized vaccines for subsequent clinical efficacy testing in large scale phase III trials.