962 resultados para Glulam beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isospectral beams have identical free vibration frequency spectrum for a specific boundary condition. The problem of finding non-uniform beams which are isospectral to a given uniform beam, with fixed-free boundary condition, leads to a multimodal optimization problem. The first Q natural frequencies of the given uniform Euler-Bernoulli beam are determined using analytical solution. The first Q natural frequencies of a non-uniform beam are obtained with the help of finite element modeling. In order to obtain the non-uniform beams isospectral to a given uniform beam, an error function is designed, which calculates the difference between the spectra of the given uniform beam and the non-uniform beam. In our study, this error function is minimized using electromagnetism inspired optimization technique, a population based iterative algorithm inspired by the attraction-repulsion physics of electromagnetism. Numerical results show the existence of the isospectral non-uniform beams for a given uniform beam, which occur as local minima. Non-uniform beams isospectral to a damaged beam, are also explored using the proposed methodology to illustrate the fact that accurate structural damage identification is difficult by just frequency measurements. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of two curved beam finite element models based on coupled polynomial displacement fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ curvilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation (v), out-of-plane bending rotation (theta(z)) and torsion rotation (theta(s)). The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the force-moment equilibrium equations. Numerical performance of these elements for constrained and unconstrained arches is compared with the conventional curved beam models which are based on independent polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of `flexureless torsion' and `torsionless flexure' and hence devoid of flexure and torsion locking. The resulting stiffness and consistent mass matrices generated from the coupled displacement models show excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility added to the elements is also demonstrated. The coupled polynomial models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures with governing equations having identical inertial terms but somewhat differing stiffness terms can be termed flexurally analogous. An example of such a structure includes an axially loaded non-uniform beam and an unloaded uniform beam, for which an exact solution exists. We find that there exist shared eigenpairs (frequency and mode shapes) for a particular mode between such structures. Non-uniform beams with uniform axial loads, gravity loaded beams and rotating beams are considered and shared eigenpairs with uniform beams are found. In general, the derived flexural stiffness functions (FSF's) for the non-uniform beams required for the existence of shared eigenpair have internal singularities, but some of the singularities can be removed by an appropriate selection of integration constants using the theory of limits. The derived functions yield an insight into the relationship between the axial load and flexural stiffness of axially loaded beam structures. The derived functions can serve as benchmark solutions for numerical methods. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we seek to find nonrotating beams that are isospectral to a given tapered rotating beam. Isospectral structures have identical natural frequencies. We assume the mass and stiffness distributions of the tapered rotating beam to be polynomial functions of span. Such polynomial variations of mass and stiffness are typical of helicopter and wind turbine blades. We use the Barcilon-Gottlieb transformation to convert the fourth-order governing equations of the rotating and the nonrotating beams, from the (x, Y) frame of reference to a hypothetical (z, U) frame of reference. If the coefficients of both the equations in the (z, U) frame match with each other, then the nonrotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients lead to a pair of coupled differential equations. Wesolve these coupled differential equations numerically using the fourth-order Runge-Kutta scheme. We also verify that the frequencies (given in the literature) of standard tapered rotating beams are the frequencies (obtained using the finite-element analysis) of the isospectral nonrotating beams. Finally, we present an example of beams having a rectangular cross-section to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these isospectral nonrotating beams to calculate the frequencies of the rotating beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.