964 resultados para Geographic IR
Resumo:
The catalytic performance of Ir-based catalysts was investigated for the reduction of NO under lean-burn conditions over binderless Ir/ZSM-5 monoliths, which were prepared by a vapor phase transport (VPT) technique. The catalytic activity was found to be dependent not only on the Ir content, but also on the ZSM-5 loading of the monolith. With the decreasing of the Ir content or the increasing of the ZSM-5 loading of the monolith, NO conversion increased. When the ZSM-5 loading on the cordierite monolith was raised up to ca. 11% and the metal Ir content was about 5 g/l, the NO conversion reached its maximum value of 73% at 533 K and SV of 20 000 h(-1). Furthermore, both the presence of 10% water vapor in the feed gas and the variation of space velocity of the reaction gases have little effect on the NO conversion. A comparative test between Ir/ZSM-5 and Cu/ZSM-5, as well as the variation of the feed gas compositions, revealed that Ir/ZSM-5 is very active for the reduction of NO by CO under lean conditions, although it is a poor catalyst for the C3H8-SCR process. This unique property of Ir/ZSM-5 makes it superior to the traditional three-way catalyst (TWC) for NO reduction under lean conditions. (C) 2001 Elsevier Science B.V. All rights reserved.
Performance and deactivation of Ir/γ-Al2O3 catalyst in the hydrogen peroxide monopropellant thruster
Resumo:
Adsorption and oxidation of chlorobenzene on Al(2)O(3), TiO(2)-Al(2)O(3), and MnO(x)/TiO(2)-Al(2)O(3) have been studied by in situ Fourier transform infrared (FT-IR) spectroscopy. At room temperature, chlorobenzene is only physisorbed on Al(2)O(3), TiO(2)-Al(2)O(3), and MnO(x)/TiO(2)-Al(2)O(3), and gives the same IR spectrum as that for liquid-phase chlorobenzene. On Al(2)O(3) no further interaction and reaction take place with treatment, at higher temperatures (up to 773 K), while phenolates are observed for TiO(2)-Al(2)O(3) and MnO(x)/TiO(2)-Al(2)O(3) at 773 K. When the adsorbed chlorobenzene coexists with oxygen, formates are detected for Al(2)O(3), while acetates are additionally observed for TiO(2-)Al(2)O(3) above 573 K. For MnO(x)/TiO(2-)Al(2)O(3), maleates are present at 573 And 673 K, while formates and acetates develop at 473 and 573 K. Almost all IR bands due to formates, acetates, and maleates disappear at 773 K, indicating that these oxygen-containing species are potential intermediates for the total oxidation of chlorobenzene.