927 resultados para Genetic Variation
Resumo:
During their development, immature CD4+ CD8+ thymocytes become committed to either the CD4 or CD8 lineage. Subsequent complete maturation of CD4+ and CD8+ cells requires a molecular match of the expressed coreceptor and the MHC specificity of the TCR. The final size of the mature CD4+ and CD8+ thymic compartments is therefore determined by a combination of lineage commitment and TCR-mediated selection. In humans and mice, the relative size of CD4+ and CD8+ peripheral T cell compartments shows marked genetic variability. We show here that genetic variations in thymic lineage commitment, rather than TCR-mediated selection processes, are responsible for the distinct CD4/CD8 ratios observed in common inbred mouse strains. Genetic variations in the regulation of lineage commitment open new ways to analyze this process and to identify the molecules involved.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
Copy number variation (CNV) is a key source of genetic diversity, but a comprehensive understanding of its phenotypic effect is only beginning to emerge. We have generated a CNV map in wild mice and classical inbred strains. Genome-wide expression data from six major organs show not only that expression of genes within CNVs tend to correlate with copy number changes, but also that CNVs influence the expression of genes in their vicinity, an effect that extends up to half a megabase. Genes within CNVs show lower expression and more specific spatial expression patterns than genes mapping elsewhere. Our analyses reveal differential constraint on copy number changes of genes expressed in different tissues. Dosage alterations of brain-expressed genes are less frequent than those of other genes and are buffered by tighter transcriptional regulation. Our study provides initial evidence that CNVs shape tissue transcriptomes on a global scale.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Juvenile or adult fish can alter their behaviour and rely on an innate and adaptive immune system to avoid/counteract pathogens, while fish embryos have to depend on egg characteristics and may be partly protected by their developing immune system that is building up from a certain age on. We developed an infection protocol that allows testing the reaction of individual whitefish embryos (Coregonus palaea) to repeated exposures to Pseudomonas fluorescens, an opportunistic bacterial fish pathogen. We used a full-factorial in vitro breeding design to separately test the effects of paternal and maternal contributions to the embryos' susceptibility to different kinds of pathogen exposure. We found that a first non-lethal exposure had immunosuppressive effects: pre-exposed embryos were more susceptible to future challenges with the same pathogen. At intermediate and high levels of pathogen intensity, maternal effects turned out to be crucial for the embryos' tolerance to infection. Paternal (i.e. genetic) effects played a significant role at the strongest level of infection, i.e. the embryos' own genetics already explained some of the variation in embryo susceptibility. Our findings suggest that whitefish embryos are largely protected by maternally transmitted substances, but build up some own innate immunocompetence several days before hatching.
Resumo:
Animals and plants are associated with symbiotic microbes whose roles range from mutualism to commensalism to parasitism. These roles may not only be taxon-specific but also dependent on environmental conditions and host factors. To experimentally test these possibilities, we drew a random sample of adult whitefish from a natural population, bred them in vitro in a full-factorial design in order to separate additive genetic from maternal environmental effects on offspring, and tested the performance of the resulting embryos under different environmental conditions. Enhancing the growth of symbiotic microbes with supplemental nutrients released cryptic additive genetic variance for viability in the fish host. These effects vanished with the concurrent addition of the water mould Saprolegnia ferax. Our findings demonstrate that the heritability of host fitness is environment-specific and critically depends on the interaction between symbiotic microbes.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
The identification of associations between interleukin-28B (IL-28B) variants and the spontaneous clearance of hepatitis C virus (HCV) raises the issues of causality and the net contribution of host genetics to the trait. To estimate more precisely the net effect of IL-28B genetic variation on HCV clearance, we optimized genotyping and compared the host contributions in multiple- and single-source cohorts to control for viral and demographic effects. The analysis included individuals with chronic or spontaneously cleared HCV infections from a multiple-source cohort (n = 389) and a single-source cohort (n = 71). We performed detailed genotyping in the coding region of IL-28B and searched for copy number variations to identify the genetic variant or haplotype carrying the strongest association with viral clearance. This analysis was used to compare the effects of IL-28B variation in the two cohorts. Haplotypes characterized by carriage of the major alleles at IL-28B single-nucleotide polymorphisms (SNPs) were highly overrepresented in individuals with spontaneous clearance versus those with chronic HCV infections (66.1% versus 38.6%, P = 6 × 10(-9) ). The odds ratios for clearance were 2.1 [95% confidence interval (CI) = 1.6-3.0] and 3.9 (95% CI = 1.5-10.2) in the multiple- and single-source cohorts, respectively. Protective haplotypes were in perfect linkage (r(2) = 1.0) with a nonsynonymous coding variant (rs8103142). Copy number variants were not detected. We identified IL-28B haplotypes highly predictive of spontaneous HCV clearance. The high linkage disequilibrium between IL-28B SNPs indicates that association studies need to be complemented by functional experiments to identify single causal variants. The point estimate for the genetic effect was higher in the single-source cohort, which was used to effectively control for viral diversity, sex, and coinfections and, therefore, offered a precise estimate of the net host genetic contribution.
Resumo:
Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.
Resumo:
The genetic determinants and phenotypic traits which make a Staphylococcus aureus strain a successful colonizer are largely unknown. The genetic diversity and population structure of 133 S. aureus isolates from healthy, generally risk-free adult carriers were investigated using four different typing methods: multilocus sequence typing (MLST), amplified fragment length polymorphism analysis (AFLP), double-locus sequence typing (DLST), and spa typing were compared. Carriage isolates displayed great genetic diversity which could only be revealed fully by DLST. Results of AFLP and MLST were highly concordant in the delineation of genotypic clusters of closely related isolates, roughly equivalent to clonal complexes. spa typing and DLST provided considerably less phylogenetic information. The resolution of spa typing was similar to that of AFLP and inferior to that of DLST. AFLP proved to be the most universal method, combining a phylogeny-building capacity similar to that of MLST with a much higher resolution. However, it had a lower reproducibility than sequencing-based MLST, DLST, and spa typing. We found two cases of methicillin-resistant S. aureus colonization, both of which were most likely associated with employment at a health service. Of 21 genotypic clusters detected, 2 were most prevalent: cluster 45 and cluster 30 each colonized 24% of the carrier population. The number of bacteria found in nasal samples varied significantly among the clusters, but the most prevalent clusters were not particularly numerous in the nasal samples. We did not find much evidence that genotypic clusters were associated with different carrier characteristics, such as age, sex, medical conditions, or antibiotic use. This may provide empirical support for the idea that genetic clusters in bacteria are maintained in the absence of adaptation to different niches. Alternatively, carrier characteristics other than those evaluated here or factors other than human hosts may exert selective pressure maintaining genotypic clusters.
Resumo:
Genetic caste determination has been described in two populations of Pogonomyrmex harvester ants, each comprising a pair of interbreeding lineages. Queens mate with males of their own and of the alternate lineage and produce two types of diploid offspring, those fertilized by males of the queens' lineage which develop into queens and those fertilized by males of the other lineage which develop into workers. Each of the lineages has been shown to be itself of hybrid origin between the species Pogonomyrmex barbatus and Pogonomyrmex rugosus, which both have typical, environmentally determined caste differentiation. In a large scale genetic survey across 35 sites in Arizona, New Mexico and Texas, we found that genetic caste determination associated with pairs of interbreeding lineages occurred frequently (in 26 out of the 35 sites). Overall, we identified eight lineages with genetic caste determination that always co-occurred in the same complementary lineage pairs. Three of the four lineage pairs appear to have a common origin while their relationship with the fourth remains unclear. The level of genetic differentiation among these eight lineages was significantly higher than the differentiation between P. rugosus and P. barbatus, which questions the appropriate taxonomic status of these genetic lineages. In addition to being genetically isolated from one another, all lineages with genetic caste determination were genetically distinct from P. rugosus and P. barbatus, even when colonies of interbreeding lineages co-occurred with colonies of either putative parent at the same site. Such nearly complete reproductive isolation between the lineages and the species with environmental caste determination might prevent the genetic caste determination system to be swept away by gene flow.
Resumo:
The distribution of mitochondrial control region-sequence polymorphism was investigated in 15 populations of Crocidura russula along an altitudinal gradient in western Switzerland. High-altitude populations are smaller, sparser and appear to undergo frequent bottlenecks. Accordingly, they showed a loss of rare haplotypes, but unexpectedly, were less differentiated than lowland populations. Furthermore, the major haplotypes segregated significantly with altitude. The results were inconsistent with a simple model of drift and dispersal. They suggested instead a role for historical patterns of colonization, or, alternatively, present-day selective forces acting on one of the mitochondrial genes involved in metabolic pathways.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth.
Resumo:
Sexual selection theory has primarily focussed on the role of mating preferences for the best individuals in the evolution of condition-dependent ornaments, traits that signal absolute quality. Because the most suitable mate for one individual is not always the best for others, however, we argue that non-directional mate choice can promote the evolution of alternative morphs that are not condition-dependent in their expression (i.e. genetic polymorphism). We list the different mate-choice rules (i.e. all individuals have the same preference; preference depends on the chooser's morph; individuals mate preferentially with conspecifics displaying an uncommon or the most frequent morph) and review experimental studies that investigated mate choice in natural populations of colour-polymorphic animals. Our review emphasises that although the experimental data support the idea that sexual selection plays an important role in the evolution of genetic colour polymorphism in many different ways, little is known about the adaptive value of each mate-choice strategy and about their implication in the evolutionary stability of colour polymorphism. One way of solving this problem is to determine the adaptive function of colour morphs, a worthwhile objective, because better understanding of mate-choice rules in polymorphic species should provide important insights into sexual-selection processes and, in turn, into the maintenance of genetic variation.
Resumo:
The species of the common shrew (Sorex araneus) group are morphologically very similar but exhibit high levels of karyotypic variation. Here we used genetic variation at 10 microsatellite markers in a data set of 212 individuals mostly sampled in the western Alps and composed of five karyotypic taxa (Sorex coronatus, Sorex antinorii and the S. araneus chromosome races Cordon, Bretolet and Vaud) to investigate the concordance between genetic and karyotypic structure. Bayesian analysis confirmed the taxonomic status of the three sampled species since individuals consistently grouped according to their taxonomical status. However, introgression can still be detected between S. antinorii and the race Cordon of S. araneus. This observation is consistent with the expected low karyotypic complexity of hybrids between these two taxa. Geographically based cryptic substructure was discovered within S. antinorii, a pattern consistent with the different postglaciation recolonization routes of this species. Additionally, we detected two genetic groups within S. araneus notwithstanding the presence of three chromosome races. This pattern can be explained by the probable hybrid status of the Bretolet race but also suggests a relatively low impact of chromosomal differences on genetic structure compared to historical factors. Finally, we propose that the current data set (available at http://www.unil.ch/dee/page7010_en.html#1) could be used as a reference by those wanting to identify Sorex individuals sampled in the western Alps.