927 resultados para Gene Flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spondias mombin L. is a fruit tree from the American continent from the Anacardiaceae family. In Brazil it is common in different vegetation types but is more frequent in the Atlantic and Amazonian rainforests. It is economically important because of its fruits, which are widely consumed raw or processed as fruit jellies, juices and ice creams. The leaves have great importance in the pharmaceutical industry because of their antibacterial properties. In the state of Pernambuco, cajá tree is widely distributed in the Zona da Mata region and less frequently in the Agreste and Sertão areas. In this work diversity and genetic structure were studied in four populations of cajá tree from Pernambuco's Zona da Mata, Northeast Brazil, using isozymes polymorphism analyses from electrophoreses. The result showed 100% of polymorphism (P) for nine alleles and the average of alleles per locus s was 2.4. The expected heterozygosity ranged from 0.530 to 0.574 and the observed heterozygosity , from 0.572 to 0.735. It was not observed inbreeding and the average F IT was -0.175, whereas within population inbreeding (f) varied from -0.08 to- 0.37. The genetic divergence among the populations (F ST) ranged from 0.006 to 0.028 and the average was 0.026. The average of estimated gene flow (Nm) was high (5.27). The CG-IPA population, corresponding to the germplasm collection of IPA, showed more than 96% of genetic similarity with other populations; therefore, it is a good representative of the existent genetic diversity in the Zona da Mata region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DnaSP, DNA Sequence Polymorphism, is a software package for the analysis of nucleotide polymorphism from aligned DNA sequence data. DnaSP can estimate several measures of DNA sequence variation within and between populations (in noncoding, synonymous or nonsynonymous sites, or in various sorts of codon positions), as well as linkage disequilibrium, recombination, gene flow and gene conversion parameters. DnaSP can also carry out several tests of neutrality: Hudson, Kreitman and Aguadé (1987), Tajima (1989), McDonald and Kreitman (1991), Fu and Li (1993), and Fu (1997) tests. Additionally, DnaSP can estimate the confidence intervals of some test-statistics by the coalescent. The results of the analyses are displayed on tabular and graphic form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mayflies (Ephemeroptera) are known to generally present a high degree of insular endemism: half of the 28 species known from Corsica and Sardinia are considered as endemic. We sequenced the DNA barcode (a fragment of the mitochondrial COI gene) of 349 specimens from 50 localities in Corsica, Sardinia, continental Europe and North Africa. We reconstructed gene trees of eight genera or species groups representing the main mayfly families. Alternative topologies were built to test if our reconstructions suggested a single or multiple Corsican/Sardinian colonization event(s) in each genus or species group. A molecular clock calibrated with different evolution rates was used to try to link speciation processes with geological events. Our results confirm the high degree of endemism of Corsican and Sardinian mayflies and the close relationship between these two faunas. Moreover, we have evidence that the mayfly diversity of the two islands is highly underestimated as at least six new putative species occur on the two islands. We demonstrated that the Corsican and Sardinian mayfly fauna reveals a complex history mainly related to geological events. The Messinian Salinity Crisis, which is thought to have reduced marine barriers, thus facilitating gene flow between insular and continental populations, was detected as the most important event in the speciation of most lineages. Vicariance processes related to the split and rotation of the Corso-Sardinian microplate had a minor impact as they involved only two genera with limited dispersal and ecological range. Colonization events posterior to the Messinian Salinity Crisis had only marginal effects as we had indication of recent gene flow only in two clades. With very limited recent gene flow and a high degree of endemism, mayflies from Corsica and Sardinia present all the criteria for conservation prioritization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interplay between selection and aspects of the genetic architecture of traits (such as linkage, dominance, and epistasis) can either drive or constrain speciation [1-3]. Despite accumulating evidence that speciation can progress to "intermediate" stages-with populations evolving only partial reproductive isolation-studies describing selective mechanisms that impose constraints on speciation are more rare than those describing drivers. The stick insect Timema cristinae provides an example of a system in which partial reproductive isolation has evolved between populations adapted to different host plant environments, in part due to divergent selection acting on a pattern polymorphism [4, 5]. Here, we demonstrate how selection on a green/melanistic color polymorphism counteracts speciation in this system. Specifically, divergent selection between hosts does not occur on color phenotypes because melanistic T. cristinae are cryptic on the stems of both host species, are resistant to a fungal pathogen, and have a mating advantage. Using genetic crosses and genome-wide association mapping, we quantify the genetic architecture of both the pattern and color polymorphism, illustrating their simple genetic control. We use these empirical results to develop an individual-based model that shows how the melanistic phenotype acts as a "genetic bridge" that increases gene flow between populations living on different hosts. Our results demonstrate how variation in the nature of selection acting on traits, and aspects of trait genetic architecture, can impose constraints on both local adaptation and speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sardinia is the second largest island in the Mediterranean and, together with Corsica and nearby mainland areas, one of the top biodiversity hotspots in the region. The origin of Sardinia traces back to the opening of the western Mediterranean in the late Oligocene. This geological event and the subsequent Messinian Salinity Crisis and Pleistocene glacial cycles have had a major impact on local biodiversity. The Dysdera woodlouse hunter spiders are one of the most diverse ground-dweller groups in the Mediterranean. Here we describe the first two species of this genus endemic to Sardinia: Dysdera jana sp. n. and Dysdera shardana sp. n. The two species show contrasting allopatric distribution: D. jana sp. n. is a narrow endemic while D. shardana sp. n. is distributed throughout most of the island. A multi-gene DNA sequence phylogenetic analys based on mitochondrial and nuclear genes supports the close relationships of the new species to the type species of the genus Dysdera erythrina. Age estimates reject Oligocene origin of the new Dysdera species and identify the Messinian Salinity Crises as the most plausible period for the split between Sardinian endemics and their closest relatives. Phylogeographic analysis reveals deep genetic divergences and population structure in Dysdera shardana sp. n., suggesting that restriction to gene flow probably due to environmental factors could explain local speciation events. Taxonomy, phylogeny, DNA sequencing, Mediterranean biogeography, phylogeography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the factors that shape adaptive genetic variation across species niches has become of paramount importance in evolutionary ecology, especially to understand how adaptation to changing climate affects the geographic range of species. The distribution of adaptive alleles in the ecological niche is determined by the emergence of novel mutations, their fitness consequences and gene flow that connects populations across species niches. Striking demographical differences and source sink dynamics of populations between the centre and the margin of the niche can play a major role in the emergence and spread of adaptive alleles. Although some theoretical predictions have long been proposed, the origin and distribution of adaptive alleles within species niches remain untested. In this paper, we propose and discuss a novel empirical approach that combines landscape genetics with species niche modelling, to test whether alleles that confer local adaptation are more likely to occur in either marginal or central populations of species niches. We illustrate this new approach by using a published data set of 21 alpine plant species genotyped with a total of 2483 amplified fragment length polymorphisms (AFLP), distributed over more than 1733 sampling sites across the Alps. Based on the assumption that alleles that were statistically associated with environmental variables were adaptive, we found that adaptive alleles in the margin of a species niche were also present in the niche centre, which suggests that adaptation originates in the niche centre. These findings corroborate models of species range evolution, in which the centre of the niche contributes to the emergence of novel adaptive alleles, which diffuse towards niche margins and facilitate niche and range expansion through subsequent local adaptation. Although these results need to be confirmed via fitness measurements in natural populations and functionally characterised genetic sequences, this study provides a first step towards understanding how adaptive genetic variation emerges and shapes species niches and geographic ranges along environmental gradients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following protection measures implemented since the 1970s, large carnivores are currently increasing in number and returning to areas from which they were absent for decades or even centuries. Monitoring programmes for these species rely extensively on non-invasive sampling and genotyping. However, attempts to connect results of such studies at larger spatial or temporal scales often suffer from the incompatibility of genetic markers implemented by researchers in different laboratories. This is particularly critical for long-distance dispersers, revealing the need for harmonized monitoring schemes that would enable the understanding of gene flow and dispersal dynamics. Based on a review of genetic studies on grey wolves Canis lupus from Europe, we provide an overview of the genetic markers currently in use, and identify opportunities and hurdles for studies based on continent-scale datasets. Our results highlight an urgent need for harmonization of methods to enable transnational research based on data that have already been collected, and to allow these data to be linked to material collected in the future. We suggest timely standardization of newly developed genotyping approaches, and propose that action is directed towards the establishment of shared single nucleotide polymorphism panels, next-generation sequencing of microsatellites, a common reference sample collection and an online database for data exchange. Enhanced cooperation among genetic researchers dealing with large carnivores in consortia would facilitate streamlining of methods, their faster and wider adoption, and production of results at the large spatial scales that ultimately matter for the conservation of these charismatic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bark beetle outbreaks have a devastating effect on economically important forests worldwide, thus requiring extensive application of management control strategies. The presence of unmanaged protected areas in close proximity to managed forests can instigate concerns that bark beetle infestations may spread from unmanaged into managed stands. We studied the impact of differential management of forest stands on the dispersal dynamics of the European spruce bark beetle, Ips typographus, making use of inferential population genetics on mitochondrial and nuclear genomes. Bayesian inferences of migration rates and a most parsimonious dispersal tree show that outgoing gene flow was consistently higher from managed to unmanaged areas. Reason for that is likely the thorough removal of potential breeding material in managed forests and thus the dispersal of the base stock beetles from these areas to unmanaged areas where breeding material is available. Our study suggests that the potential threat posed by unmanaged to managed forests in regard to I. typographus infestation needs to be carefully re-considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On a geological time scale the conditions on earth are very variable and biological patterns (for example the distributions of species) are very dynamic. Understanding large scale patterns of variation observed today thus requires a deep understanding of the historical factors that drove their evolution. In this thesis, we reevaluated the evolution and maintenance of a continental color cline observed in the European barn owl (Tyto alba) using population genetic tools. The colour cline spans from south-est Europe where most individual have pure white underparts to north and east Europe where most individuals have rufous-brown underparts. Our results globally showed that the old scenario, stipulating that the color cline evolved by secondary contact of two color morphs (white and rufous) that evolved in allopatry during the last ice age has to be revised. We collected samples of about 700 barn owls from the Western Palearctic to establish the first population genetic data set for this species. Individuals were genotyped at 22 microsatellites markers, at one mitochondrial gene, and at a candidate color gene. The color of each individuals was assessed and their sex determined by molecular methods. We first showed that the genetic variation in Western Europe is very limited compared to the heritable color variation. We found no evidences of different glacial lineages, and showed that selection must be involved in the maintenance of the color cline (chapter 1). Using computer simulations, we demonstrated that the post-glacial colonization of Europe occurred from the Iberian Peninsula and that the color cline could not have evolved by neutral demographic processes during this colonization (chapter 2). Finally we reevaluated the whole history of the establishment of the Western Palearctic variation of the barn owl (chapter 3): This study showed that all Western European barn owls descend from white barn owls phenotypes from the Middle East that colonized the Iberian Peninsula via North-Africa. Following the end of the last ice age (20'000 years ago), these white barn owls colonized Western Europe and under selection a novel rufous phenotype evolved (during or after the colonization). An important part of the color variation could be explained by a single mutation in the melanocortin-1-receptor (MC1R) gene that appeared during or after the colonization. The colonization of Europe reached until Greece, where the rufous birds encountered white ones (which reached Greece from the Middle East over the Bosporus) in a secondary contact zone. Our analyses show that white and rufous barn owls in Greece interbreed only to a limited extent. This suggests that barn owls are at the verge of becoming two species in Greece and demonstrates that European barn owls represent an incipient ring species around the Mediterranean. The revisited history of the establishment of the European barn owl color cline makes this model system remarkable for several aspects. It is a very clear example of strong local adaptation that can be achieved despite high gene flow (strong color and MC1R differentiation despite almost no neutral genetic differentiation). It also offers a wonderful model system to study the interactions between colonization processes and selection processes which have, for now, been remarkably understudied despite their potentially ubiquitous importance. Finally it represents a very interesting case in the speciation continuum and appeals for further studying the amount of gene flow that occurs between the color morphs in Greece. -- Sur l'échelle des temps géologiques, les conditions sur terre sont très variables et les patrons biologiques (telle que la distribution des espèces) sont très dynamiques. Si l'on veut comprendre des patrons que l'on peut observer à large échelle aujourd'hui, il est nécessaire de d'abord comprendre les facteurs historiques qui ont gouverné leur établissement. Dans cette thèse, nous allons réévaluer, grâce à des outils modernes de génétique des populations, l'évolution et la maintenance d'un cline de couleur continental observé chez l'effraie des clochers européenne (Tyto alba). Globalement, nos résultats montrent que le scenario accepté jusqu'à maintenant, qui stipule que le cline de couleur a évolué à partir du contact secondaire de deux morphes de couleur (blanches et rousses) ayant évolué en allopatrie durant les dernières glaciations, est à revoir. Afin de constituer le premier jeu de données de génétique des populations pour cette espèce, nous avons récolté des échantillons d'environ 700 effraies de l'ouest Paléarctique. Nous avons génotypé tous les individus à 22 loci microsatellites, sur un gène mitochondrial et sur un autre gène participant au déterminisme de la couleur. Nous avons aussi mesuré la couleur de tous les individus et déterminé leur sexe génétiquement. Nous avons tout d'abord pu montrer que la variation génétique neutre est négligeable en comparaison avec la variation héritable de couleur, qu'il n'existe qu'une seule lignée européenne et que de la sélection doit être impliquée dans le maintien du cline de couleur (chapitre 1). Grâce à des simulations informatiques, nous avons démontré que l'ensemble de l'Europe de l'ouest a été recolonisé depuis la Péninsule Ibérique après les dernières glaciations et que le cline de couleur ne peut pas avoir évolué par des processus neutre durant cette colonisation (chapitre 2). Finalement, nous avons réévalué l'ensemble de l'histoire postglaciaire de l'espèce dans l'ouest Paléarctique (chapitre 3): l'ensemble des effraies du Paléarctique descendent d'effraie claire du Moyen-Orient qui ont colonisé la péninsule ibérique en passant par l'Afrique du nord. Après la fin de la dernière glaciation (il y a 20'000 ans), ces effraies claires ont colonisé l'Europe de l'ouest et ont évolués par sélection le phénotype roux (durant ou après la colonisation). Une part importante de la variation de couleur peut être expliquée par une mutation sur le gène MC1R qui est apparue durant ou juste après la colonisation. Cette vague de colonisation s'est poursuivie jusqu'en Grèce où ces effraies rousses ont rencontré dans une zone de contact secondaire des effraies claires (qui sont remontées en Grèce depuis le Moyen-Orient via le Bosphore). Nos analyses montrent que le flux de gènes entre effraies blanches et rousses est limité en Grèce, ce qui suggère qu'elles sont en passe de former deux espèces et ce qui montre que les effraies constituent un exemple naissant de spéciation en anneaux autour de la Méditerranée. L'histoire revisitée des effraies des clochers de l'ouest Paléarctique en fait un système modèle remarquable pour plusieurs aspects. C'est un exemple très claire de forte adaptation locale maintenue malgré un fort flux de gènes (différenciation forte de couleur et sur le gène MC1R malgré presque aucune structure neutre). Il offre également un très bon système pour étudier l'interaction entre colonisation et sélection, un thème ayant été remarquablement peu étudié malgré son importance. Et il offre finalement un cas très intéressant dans le « continuum de spéciation » et il serait très intéressant d'étudier plus en détail l'importance du flux de gènes entre les morphes de couleur en Grèce.