966 resultados para Gastropod shells
Resumo:
The main objective of this Thesis was to encapsulate single viable cells within polyelectrolyte films using the Layer-by-Layer (LbL) technique. Most of the experiments used human mesenchymal stem cells (MSCs) whose characteristics (capacity of selfrenewal and potential to differentiate into several types of cells) make them particularly interesting to be used in biomedical applications. Also, most of the experiments used alginate (ALG) as the anionic polyelectrolyte and chitosan (CHI) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Hyaluronic acid (HA) was also tested as an anionic polyelectrolyte. At the beginning of the work, the experimental conditions necessary to obtain the encapsulation of individual cells were studied and established. Through fluorescence microscopy visualization by staining the cell nucleus and using polyelectrolytes conjugated to fluorescent dyes, it was possible to prove the obtainment of capsules containing one single cell inside. Capsules aggregation was an observed problem which, despite the efforts to design an experimental process to avoid this situation (namely, by playing with cell concentration and different means of re-suspending and stirring the cells), was not completely overcome. In a second part of the project, single cells were encapsulated within polyelectrolyte layers made of CHI/ALG, PAH/ALG and PAH/HA and their viability was evaluated through the resazurin reduction assay and the Live/Dead assay. In these experiments, during the LbL process, polyelectrolyte solutions were used at a concentration of 1mg/mL based on literature. In general, the viability of the encapsulated cells was shown to be very low/absent. Then, as a consequence of the lack of viability of cells encapsulated within polyelectrolyte layers, the LbL technique was applied in cells growing adherent to the surface of cell culture plates. The cells were cultured like in a sandwich, between the surface of the cell culture dish and the polyelectrolyte layers. Also here, the polyelectrolyte solutions were used at a concentration of 1mg/mL during the LbL process. Surprisingly, cell viability was also absent in these systems. A systematic study (dose-effect study) was performed to evaluate the effect of the concentration of the individual polyelectrolytes (ALG, CHI and PAH were studied) in cell viability. Experiments were performed using cells growing adherent to the surface of cell culture plates. The results pointed out that a very high (cytotoxic) concentration of polyelectrolytes had been in use. Also, in general, PAH was much more cytotoxic than CHI, whereas ALG was the less cytotoxic polyelectrolyte. Finally, using alginate and chitosan solutions with adequate concentrations (low concentrations: 50ng/mL and 1μg/mL), the encapsulation of single viable cells was again attempted. Once again, the encapsulated cells were not shown to be viable. In conclusion, the viability of the encapsulated cells is not only dependent on the cytotoxic characteristics (or combined cytotoxic characteristics) of the polyelectrolytes but it seems that, when detached from the culture plates, the cells become too fragile and lose their viability very easily.
Resumo:
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod. mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The F. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed at determining the minimum time required for the penetration of Salmonella Heidelberg inside the eggs after contact with contaminated material. Recently-collected brown and white eggs from laying hens between 45-50 weeks of age, reared in a commercial poultry house, were artificially contaminated by contact with wood shavings moistened with liquid inoculum of Salmonella Heidelberg in stationary-growth phase (10³-10(4) CFU g-1). According to type (white or brown), eggs were distributed into three different groups, with four replicates each: negative control group (no artificial contamination), positive control group (analyzed externally immediately after contamination and internally after the maximum storage period of the test group) and test group. Eggs were stored at controlled environmental temperature varying from 25ºC to 30ºC. In the test group, eggs contents (yolk and albumen) were pooled and analyzed after 1:00, 1:30, 2:00, 2:30, 3:00, 3:30, and 4:00 hours after contamination for the presence of Salmonella Heidelberg in 25g of this pool. The experimental unit consisted of five eggs in each test. The analysis protocol included pre-enrichment, selective enrichment, plating on selective agar, and biochemical and serological tests. The results obtained were submitted to logistic regression, which indicated that the presence of Salmonella Heidelberg was verified after 2:16 h and 2:44 h of contact with white and brown eggs, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biotic interactions between brachiopods and spionid polychaete worms, collected around San Juan Islands (USA), were documented using observations from live-collected individuals and traces of bioerosion found in dead brachiopod shells. Specimens of Terebratalia tranversa (Sowerby), Terebratulina unguicula (Carpenter), Laqueus californianus (Koch), and Hemithiris psittacea (Gmelin) were collected from rocky and muddy substrates, from sites ranging from 14.7-93.3 m in depth. Out of 1,131 specimens, 91 shells showed traces of bioerosion represented by horizontal tubes. Tubes are U-shaped, straight or slightly curved, sometimes branched, with both tube openings communicating externally. on internal surfaces of infested shells, blisters are observed. All brachiopod species yielded tubes, except for H. psittacea. Tubes are significantly more frequent on live specimens, and occur preferentially on larger, ventral valves. This pattern suggests selectivity by the infester rather than a taphonomic bias. Given the mode of life of studied brachiopods (epifaunal, sessile, attached to the substrate, lying on dorsal valve), ventral valves of living specimens should offer the most advantageous location for suspension-feeding infesters. Frequent infestation of brachiopods by parasitic spionids is ecologically and commercially noteworthy because farmed molluscs are also commonly infested by parasitic polychaetes. In addition, brachiopod shells are among the most common marine macroscopic fossils found in the Phanerozoic fossil record. From a paleontological perspective, spionid-infested brachiopod shells may be a prime target for studying parasite-host interactions over evolutionary time scales.
Resumo:
Newly discovered benthic fossils and specimens illustrated in the paleontological literature indicate that drilling predators (or parasites) were present in the Permian. New field data from southern Brazil document the first drill holes ever reported for Permian bivalve mollusks. In addition, a literature review revealed drill holes in shells of articulate brachiopods from Russia, Greece, and West Texas. Holes range in size from 0.1 to 5.8 mm and are typically round, cylindrical, singular penetrations perpendicular to the valve surface. Incomplete, healed, and multiple holes are absent. Drilling frequency, a proxy for predation intensity, is very low: less than 1 percent (this estimate may be seriously affected by taphonomic and monographic biases). Literature data suggest that frequency of drilled specimens varied significantly among higher brachiopod taxa. The geography and stratigraphy of drilled specimens indicate that drilling organisms were worldwide in their occurrence and continuously present in marine ecosystems throughout the Permian. This report is consistent with other recent studies indicating that although drillers were continuously present throughout the Phanerozoic, drilling intensity was lower in the Late Paleozoic and early Mesozoic.
Resumo:
This study is the first assessment of mollusk fossil assemblages relative to the compositional fidelity of modern mollusk living and death assemblages. It also shows that the sedimentary record can provide information on the original, non-human-impacted, freshwater malacofauna biodiversity, based on Late Pleistocene shells. The fossil mollusk assemblage from the Touro Passo Formation (Pleistocene-Holocene) was compared to living and death assemblages of the Touro Passo River, southern Brazil, revealing little resemblance between fossil and live-dead species composition. Although the living and death assemblages agree closely in richness, species composition, and species relative abundances (both proportional and rank), the fossil assemblage differs significantly from both modern assemblages in most of these measures. The fossil assemblage is dominated by the native endemic corbiculid bivalve Cyanocyclas limosa and the gastropod Heleobia aff. bertoniana. These are absent in the living assemblages, and both living and death assemblages are dominated by the alien Asiatic corbiculid C. fluminea, which is absent in the fossil assemblage. The fossil assemblage also contains, overall, a higher proportional abundance of relatively thick-shelled species, suggesting a genuine bias against the thinner- and smaller-shelled species. Our results suggest that contemporary environmental changes, such as the introduction of some alien freshwater mollusk species, together with post-burial taphonomic processes, are the main factors leading to the poor fidelity of the fossil assemblage studied. Hence, the taxonomic composition of the Late Pleistocene mollusks from the Touro Passo Formation probably would show greater similarity to present-day assemblages wherever the mollusk biodiversity is not disturbed by human activities.
Resumo:
In this paper, an exact series solution for the vibration analysis of circular cylindrical shells with arbitrary boundary conditions is obtained, using the elastic equations based on Flügge's theory. Each of the three displacements is represented by a Fourier series and auxiliary functions and sought in a strong form by letting the solution exactly satisfy both the governing differential equations and the boundary conditions on a point-wise basis. Since the series solution has to be truncated for numerical implementation, the term exactly satisfying should be understood as a satisfaction with arbitrary precision. One of the important advantages of this approach is that it can be universally applied to shells with a variety of different boundary conditions, without the need of making any corresponding modifications to the solution algorithms and implementation procedures as typically required in other techniques. Furthermore, the current method can be easily used to deal with more complicated boundary conditions such as point supports, partial supports, and non-uniform elastic restraints. Numerical examples are presented regarding the modal parameters of shells with various boundary conditions. The capacity and reliability of this solution method are demonstrated through these examples. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from spherical symmetry. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Accurate paleoenvironmental reconstruction relies on the correct interpretation of the postmortem history of skeletal remains in shelly assemblages. In contrast to marine settings, actualistic taphonomic studies are lacking for shell-rich concentrations in freshwater riverine systems. In particular, the taphonomic pathways and the origins of taphonomic signatures that are recorded in bioclasts from fluvial settings are poorly known. In this study, we addressed this issue by comparing the taphonomic signatures and shell-damage profiles among shells of freshwater mollusks recorded both in death and in fossil assemblages from the same fluvial environment. Our data indicated that dissolution was the most pervasive taphonomic process leading to the destruction of the shells. The loss of taphonomic information extended beyond shell dissolution in the riverbed, or the early diagenesis in the sedimentary record. The loss of biological information from the living community through the death assemblage, until the incorporation of shells as fossils, mainly occurred during the time the shells were in the sediment-water interface. Though this destruction affected primarily dead shells, reworked fossils also became vulnerable because they were carried out into the river load again by channel avulsion. A model that included the main taphonomic pathways followed by the molluscan shells in the fluvial Touro Passo Formation (Pleistocene-Holocene) is discussed. In this model, two main destructive domains were recognized, which were the biological, physical, and chemical processes operating at the taphonomically active zone (= TAZ domain) and the pedogenetic domain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)