867 resultados para Gamete exposure
Resumo:
Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.
Resumo:
Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
There is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (<= 1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Present study had documented total mercury levels in six commonly consumed fish species, and performed across-sectional study on local residents to gauge their intake of fish (via dietary survey) and mercury exposure (via hair biomarker analyses). Mean total mercury content in edible composites of locally-caught fishes (topse, hilsa, mackerel, topse, sardinella, khoira) was low and ranged from 0.01 to 0.11 mu g g(-1) mercury, dry weight. In a cross-sectional study of 58 area residents, the mercury content in hair ranged from 0.25 to 1.23 mu g g(-1), with a mean of 0.65 +/- 0.23 mu g g(-1), Flair mercury level was not influenced by gender, age, or occupation. Mean number of meals consumed per week was 3.1 +/- 1.1, and all participants consumed at least one fish meal per week. When related to fish consumption, a significant positive association was found between number of fish meals consumed per week and hair mercury levels.
Resumo:
Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4-10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+-permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+-permeable AMPAR modulation). Co-inhibiting PKA, GSK-3 beta and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.
Resumo:
Aims: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17 beta-estradiol administration to neonatal female rats. Main methods: Female Wistar rats which were administered 17 beta-estradiol on day 2 and 3 after birth were sacrificed 120 days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Key findings: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-alpha was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Significance: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The instability of an amorphous indium-gallium-zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1-2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface separately.
Resumo:
The proportion of torpedograss tissue exposed to glyphosate at application rates of 0.28, 0.56, 1.12, 2.24, and 4.48 kg/ha affected control as measured by regrowth. The effect of tissue exposure was more pronounced as application rate decreased. This study suggests that higher rates of glyphosate need to be used during higher water levels, when less torpedograss tissue is exposed to herbicide spray and lower rates may be used during periods of low water levels. Addition of the water conditioning agent Quest (R) (0.25% v/v) to glyphosate spray mixtures diminished the influence of simulated rain events following glyphosate application. Twelve other adjuvants did not influence the effect of simulated rain events.
Resumo:
This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)
Resumo:
Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)