916 resultados para GLYCOGEN-SYNTHASE-KINASE-3-BETA
Resumo:
The purpose of this study was to examine cell glucose kinetics in rat skeletal muscle during iso-osmotic recovery from hyper- and hypo-osmotic stress. Rat EDL muscles were incubated for sixty minutes in either HYPO (190 mmol/kg), ISO (290 mmol/kg), or HYPER (400 mmol/kg) media (Sigma medium-199, 8 mM glucose) according to an established in vitro whole muscle model. In addition to sixty minute baseline measures in aniso-osmotic conditions, (HYPO-0 n=8; ISO- 0, n=S; HYPER-0, n=8), muscles were subjected to either one minute (HYPO-1 n=8; ISO-1, n=8; HYPER-1, n=8) or five minutes (HYPO-5 n=8; ISO-5, n=8; HYPER-5, n=8) of iso-osmotic recovery media and analyzed for metabolite content and glycogen synthase percent activation. To determine glucose uptake during iso-osmotic recovery, muscles (n=6 per group) were incubated for sixty minutes in either hypo-, iso-, or hyper-osmotic media immediately followed by five minutes of iso-osmotic media containing 3H-glucose and 14 C-mannitol. Increased relative water content/decreased [glucose] (observed in HYPO-0) and decreased water content/increased [glucose] (observed in HYPER-0) returned to ISO levels within 5 minutes of recovery. Glycogen synthase percent activation increased significantly in HYPO-5 over iso-osmotic controls. Glucose uptake measurements revealed no significant differences between groups. It was determined that [glucose] and muscle water content rapidly recovered from osmotic stress demonstrating skeletal muscle's resilience to osmotic stress.
Resumo:
Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala et Thr115Ala. L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide (VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent également que les dommages à l'ADN influencent la composition des corps nucléolaires, structure nucléaire qui émerge maintenant comme une composante importante de la réponse aux dommages à l'ADN. Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une fonction de Bcl-xL durant la mitose et dans la stabilité génomique. Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la progression de la mitose jusqu'à la division cellulaire.
Resumo:
Bone morphogenetic proteins (BMPs) and their receptors are expressed in ovarian theca cells (TC) and granulosa cells (GC) and BMPs have been implicated in the regulation of several aspects of follicle development including thecal androgen production and granulosal oestrogen production. Their potential involvement in luteal function has received less attention. in this study, we first compared relative abundance of mRNA transcripts for BMPs, activin-beta A and BMP/activin receptors in bovine corpus luteum (CL) and follicular theca and granulosa layers before undertaking functional in vitro experiments to test the effect of selected ligands (BMP6 and activin A) on luteinizing bovine TC and GC. Relative to P-actin transcript abundance, CL tissue contained more BMP4 and -6 mRNA than granulosa, more BMP2 mRNA than theca but much less activin-beta A mRNA than both granulosa and theca. Transcripts for all seven BMP/activin receptors were readily detected in each tissue and two transcripts (BMPRII, ActRIIA) were more abundant in CL than either theca or granulosa, consistent with tissue responsiveness. In vitro luteinization of TC and GC from antral follicles (4-6 mm) was achieved by culturing with 5% serum for 6 days. Treatment with BMP6 (0, 2, 10, and 50 ng/ml) and activin A (0, 2, 10 and 50 ng/ml) under these conditions dose-dependently suppressed forskolin-induced progesterone (P-4) secretion from both cell types without affecting cell number. BMP6 reduced forskolin-stimulated upregulation of STAR mRNA and raised 'basal' CYP17A1 mRNA level in theca-lutein cells without affecting expression of CYP11A1 or hydroxy-Delta-5-steroid dehydrogenase, 3 beta- and steroid Delta-isomerase 1 (HSD3B1). In granulosa-lutein cells, STAR transcript abundance was not affected by BMP6, whereas forskolin-induced expression of CYP11A1, HSD3B1, CYP19A1 and oxytocin transcripts was reduced. In both cell types, follistatin attenuated the suppressive effect of activin A and BMP6 on forskolin-induced P4 secretion but had no effect alone. Granulosa-lutein cells secreted low levels of endogenous activin A (similar to 1 ng/ml); BMP6 reduced this, while raising follistatin secretion thus decreasing activin A:follistatin ratio. Collectively, these findings support inhibitory roles for BMP/activin signalling in luteinization and steroidogenesis in both TC and GC.
Resumo:
We reported recently that bovine theca interna cells in primary culture express several type-I and type-II receptors for bone morphogenetic proteins (BMPs). The same cells express at least two potential ligands for these receptors (BMP-4 and - 7), whereas bovine granulosa cells and oocytes express BMP-6. Therefore, BMPs of intrafollicular origin may exert autocrine/paracrine actions to modulate theca cell function. Here we report that BMP-4, - 6, and - 7 potently suppress both basal ( P < 0.0001; respective IC50 values, 0.78, 0.30, and 1.50 ng/ml) and LH-induced ( P < 0.0001; respective IC50 values, 5.00, 0.55, and 4.55 ng/ml) androgen production by bovine theca cells while having only a moderate effect on progesterone production and cell number. Semiquantitative RT-PCR showed that all three BMPs markedly reduced steady-state levels of mRNA for P450c17. Levels of mRNA encoding steroidogenic acute regulatory protein, P450scc, and 3 beta-hydroxysteroid dehydrogenase were also reduced but to a much lesser extent. Immunocytochemistry confirmed a marked reduction in cellular content of P450c17 protein after BMP treatment ( P < 0.001). Exposure to BMPs led to cellular accumulation of phosphorylated Smad1, but not Smad2, confirming that the receptors signal via a Smad1 pathway. The specificity of the BMP response was further explored by coincubating cells with BMPs and several potential BMP antagonists, chordin, gremlin, and follistatin. Gremlin and chordin were found to be effective antagonists of BMP-4 and - 7, respectively, and the observation that both antagonists enhanced ( P < 0.01) androgen production in the absence of exogenous BMP suggests an autocrine/paracrine role for theca-derived BMP- 4 and - 7 in modulating androgen production. Collectively, these data indicate that an intrafollicular BMP signaling pathway contributes to the negative regulation of thecal androgen production and that ovarian hyperandrogenic dysfunction could be a result of a defective autoregulatory pathway involving thecal BMP signaling.
Resumo:
Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.
Resumo:
Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.
Resumo:
Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 mu M) concentrations of forskolin, respectively. The expression of GLP-1 receptors in a cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on a cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates a cell electrical activity, increases [Ca(2+)] enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP]). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP],.
Resumo:
A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O(2) ((1)Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O(2) ((1)Delta(g)). On the basis of (18)O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5 alpha-hydroperoxide (5 alpha-OOH) (the major product of O(2) ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O(2) ((1)Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5 alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O(2) ((1)Delta(g)) and raises questions about the role of ozone in biological processes.
Resumo:
Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.
Resumo:
Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxyaldehyde (1a) and 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and la is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between la with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5 alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The methanolic extract of the bark of the medicinal plant Qualea parviflora (Vochysiaceae) contains new nor-seco-triterpene and pentacyclic triterpenoids. They were separated in a preparative scale using droplet counter-current chromatography. The optimum solvent used was composed of a mixture of CHCl3/MeOH/H2O (43:37:20, v/v) in the descending mode and led to a successful separation of the new compound 28-nor-17, 22-seco-2 alpha, 3 beta, 19, 22, 23-pentahydroxy-Delta(12)-olecinane, besides the known triterpenoids bellericagenin B, bellericaside B and arjunglucoside I. Identification was performed by ESI-MS, H-1 NMR and C-13 NMR analyses.
Resumo:
The ultrastructure of the fat body cells (trophocytes) of the last larval instar of Pachycondyla (= Neoponera) villosa is presented. The cytoplasm is restricted to the cell periphery and to the smaller strips among the vacuoles, protein granules, lipid droplets, and around the nucleus. Cytochemically, the presence of basic amino acids in the protein granules and in the nuclei was observed by using the ethanolic phosphotungstic acid technique (EPTA). The lipid droplets stained for unsaturated lipids. This result was further confirmed by gas chromatography and mass spectrometry, where the unsaturated fatty acids were identified as oleic and linoleic acids together with saturated fatty acids such as palmitic and stearic acid. Carbohydrates (glycogen) were also detected in the fat body. The glycogen is present as beta particles distributed among the lipid droplets and sometimes attached to them.