975 resultados para GFP-LIKE PROTEINS
Resumo:
Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.
Resumo:
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Resumo:
Mariner-like elements are widely present in diverse organisms. These elements constitute a large fraction of the eukaryotic genome; they transpose by a ""cut-and-paste"" mechanism with their own transposase protein. We found two groups of mobile elements in the genus Rhynchosciara. PCR using primers designed from R. americana transposons (Ramar1 and Ramar2) were the starting point for this comparative study. Genomic DNA templates of four species: R. hollaenderi, R. millerii, R. baschanti, and Rhynchosciara sp were used and genomic sequences were amplified, sequenced and the molecular structures of the elements characterized as being putative mariner-like elements. The first group included the putative full-length elements. The second group was composed of defective mariner elements that contain a deletion overlapping most of the internal region of the transposase open reading frame. They were named Rmar1 (type 1) and Rmar2 (type 2), respectively. Many conserved amino acid blocks were identified, as well as a specific D,D(34) D signature motif that was defective in some elements. Based on predicted transposase sequences, these elements encode truncated proteins and are phylogenetically very close to mariner-like elements of the mauritiana subfamily. The inverted terminal repeat sequences that flanked the mariner-like elements are responsible for their mobility. These inverted terminal repeat sequences were identified by inverse PCR.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
By applying a directed evolution methodology specific enzymatic characteristics can be enhanced, but to select mutants of interest from a large mutant bank, this approach requires high throughput screening and facile selection. To facilitate such primary screening of enhanced clones, an expression system was tested that uses a green fluorescent protein (GFP) tag from Aequorea victoria linked to the enzyme of interest. As GFP`s fluorescence is readily measured, and as there is a 1:1 molar correlation between the target protein and GFP, the concept proposed was to determine whether GFP could facilitate primary screening of error-prone PCR (EPP) clones. For this purpose a thermostable beta-glucosidase (BglA) from Fervidobacterium sp. was used as a model enzyme. A vector expressing the chimeric protein BglA-GFP-6XHis was constructed and the fusion protein purified and characterized. When compared to the native proteins, the components of the fusion displayed modified characteristics, such as enhanced GFP thermostability and a higher BglA optimum temperature. Clones carrying mutant BglA proteins obtained by EPP, were screened based on the BglA/GFP activity ratio. Purified tagged enzymes from selected clones resulted in modified substrate specificity.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
Farnesol (FOH) is a non-sterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, a catabolite of the cholesterol biosynthetic pathway. These isoprenoids inhibit proliferation and induce apoptosis. It has been shown previously that FOH triggers morphological features characteristic of apoptosis in the filamentous fungus Aspergillus nidulans. Here, we investigate which pathways are influenced through FOH by examining the transcriptional profile of A. nidulans exposed to this isoprenoid. We observed decreased mRNA abundance of several genes involved in RNA processing and modification, transcription, translation, ribosomal structure and biogenesis, amino acid transport and metabolism, and ergosterol biosynthesis. We also observed increased mRNA expression of genes encoding a number of mitochondrial proteins and characterized in detail one of them, the aifA, encoding the Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. The Delta aifA mutant is more sensitive to FOH (about 8.0% and 0% survival when exposed to 10 and 100 mu M FOH respectively) than the wild type (about 97% and 3% survival when exposed to 10 and 100 mu M FOH respectively). These results suggest that AifA is possibly important for decreasing the effects of FOH and reactive oxygen species. Furthermore, we showed an involvement of autophagy and protein kinase C in A. nidulans FOH-induced apoptosis.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
Encapsidation of circular DNA by papillomavirus capsid protein was investigated in Cos-1 cells. Plasmids carrying both an SV40 origin of replication (or) and an E. coli on were introduced into Cos-1 cells by DNA transfection. PV capsid proteins were supplied in trans by recombinant vaccinia viruses. Pseudovirions were purified from infected cells and their packaged DNA was extracted and used to transform E. coil as an indication of packaging efficacy. VLPs assembled from BPV-1 L1 alone packaged little plasmid DNA, whereas VLPs assembled from BPV-1 L1+L2 packaged plasmid DNA at least 50 times more effectively. BPV-1 L1+L2 VLPs packaged a plasmid containing BPV-1 sequence 8.2 +/- 3.1 times more effectively than a plasmid without BW sequences. Using a series of plasmid constructs comprising a core BPV-1 sequence and spacer DNA it was demonstrated that BW VLPs could accommodate a maximum of about 10.2 kb of plasmid DNA, and that longer closed circular DNA was truncated to produce less dense virions with shorter plasmid sequences. The present study suggests that packaging of genome within PV virions involves interaction of L2 protein with specific DNA sequences, and demonstrates that PV pseudovirions have the potential to be used as DNA delivery vectors for plasmids of up to 10.2 kb. (C) 1998 Academic Press.
Resumo:
It has been shown previously that recombinant virus-like particles (VLPs) of papillomavirus can induce VLP-specific humoral and cellular immune responses following parenteral administration. To test whether mucosal administration of bovine papillomavirus type 1 (BPV1) VLPs could produce mucosal as well as systemic immune responses to VLPs, 50 mu g chimeric BPV1 VLPs containing an HPV16 E7 CTL epitope (BPVL1/E7 VLP) was administered intranasally to mice. After two immunisations, L1-specific serum IgG and IgA were observed. L1-specific IgG and IgA were also found in respiratory and vaginal secretions. Both serum and mucosal antibody inhibited papillomavirus VLP-induced agglutination of RBC, indicating that the antibody induced by mucosal immunisation may recognize conformational determinants associated with virus neutralisation. For comparison, VLPs were given intramuscularly, and systemic and mucosal immune responses were generally comparable following systemic or mucosal delivery. However, intranasal administration of VLP induced significantly higher local IgA response in lung, suggesting that mucosally delivered HPV VLP may be more effective for mediating local mucosal immune responses. Intranasal immunisation with HPV6b L1 VLP produced VLP-specific T proliferative responses in splenocytes, and immunisation with BPVL1 VLP containing an HPV16 E7 CTL epitope induced E7-specific CTL responses. We conclude that immunisation with papillomavirus VLPs via mucosal and intramuscular routes, without adjuvant, can elicit specific antibody at mucosal surfaces and also systemic VLP epitope specific T cell responses. These findings suggest that mucosally delivered VLPs may offer an alternative HPV VLP vaccine strategy for inducing protective humoral immunity to anogenital HPV infection, together with cell-mediated immune responses to eliminate any cells which become infected. (C) 1998 Academic Press.
Resumo:
Three defensin-like peptides (DLPs) were isolated from platypus venom and sequenced. One of these peptides, DLP-1, was synthesized chemically and its three-dimensional structure was determined using NMR spectroscopy. The main structural elements of this 42-residue peptide were an anti-parallel beta-sheet comprising residues 15-18 and 37-40 and a small 3(10) helix spanning residues 10-12. The overall three-dimensional fold is similar to that of beta-defensin-12, and similar to the sodium-channel neurotoxin ShI (Stichodactyla helianthus neurotoxin I). However, the side chains known to be functionally important in beta-defensin-12 and ShI are not conserved in DLP-1, suggesting that it has a different biological function. Consistent with this contention, we showed that DLP-1 possesses no anti-microbial properties and has no observable activity on rat dorsal-root-ganglion sodium-channel currents.
Resumo:
Several macrocyclic peptides (similar to 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional struc ture of one of these novel peptides, cycloviolacin O1, using H-1 NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants. (C) 1999 Academic Press.
Resumo:
Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the p-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.