989 resultados para GAMMA-GAMMA
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Within a chiral constituent quark model approach, η-meson production on the proton via electromagnetic and hadron probes is studied. With few parameters, the differential cross section and polarized beam asymmetry for γp → ηp and differential cross section for π − p → ηn processes are calculated and successfully compared with the data in the center-of-mass energy range from threshold up to 2 GeV. The five known resonances S11(1535), S11(1650), P13(1720),D13(1520), and F15(1680) are found to be dominant in the reaction mechanisms in both channels. Possible roles played by new resonances are also investigated; and in the photoproduction channel, significant contribution from S11 and D15 resonances, with masses around 1715 and 2090 MeV, respectively, are deduced. For the so-called missing resonances, no evidence is found within the investigated reactions. The helicity amplitudes and decay widths of N ∗ → πN, ηN are also presented and found to be consistent with the Particle Data Group values.
Resumo:
Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose C-12(6+) ion or Co-60 gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F(1) hybrid strain male mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray. Moreover, the effects were more obvious in the group irradiated by C-12(6+) ion than in that irradiated by Co-60 gamma-ray. Pre-exposure with low-dose C-12(6+) ion or Co-60 gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion or Co-60 gamma-ray. Chromosomal aberrations were analyzed in metaphase II oocytes at 7 weeks after irradiation. The relative biological effectiveness (RBE) of C C-12(6+) ion was calculated with respect to Co-60 gamma-ray for the induction of chromosornal aberrations. The C-12(6+) ion and Co-60 gamma-ray dose-response relationships for chromosomal aberrations were plotted by linear quadratic models. The data showed that there was a dose-related increase in frequency of chromosomal aberrations in all the treated groups compared to controls. The RBE values for C-12(6+) ions relative to (CO)-C-60 gamma-rays were 2.49, 2.29, 1.57, 1.42 or 1.32 for the doses of 0.5, 1.0, 2.07 4.0 or 6.0 Gy, respectively. Moreover, a different distribution of the various types of aberrations has been found for C-12(6+) ion and Co-60 gamma-ray irradiations. The dose-response relationships for C-12(6+) ion and (CO)-C-60 gamma-ray exhibited positive correlations. The results from the present study may be helpful for assessing genetic damage following exposure of immature oocytes to ionizing radiation.
Resumo:
Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on gamma-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in (270)Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.
Resumo:
We have investigated the performance of a EXOGAM-Segmented-Clover with 16 segments as a Compton polarimeter to measure the linear polarization of gamma rays. The polarization sensitivity of the Clover detector has been measured at the energy of 1332keV through the coincidence measurements of cascade gamma-rays from Co-60. Experimental values were in good accord with our expectation.We have investigated the performance of a EXOGAM-Segmented-Clover with 16 segments as a Compton polarimeter to measure the linear polarization of gamma rays. The polarization sensitivity of the Clover detector has been measured at the energy of 1332keV through the coincidence measurements of cascade gamma-rays from Co-60. Experimental values were in good accord with our expectation.
Resumo:
Hepatoma and melanoma cells were exposed to C-12(6+) beams generated by HIRFL facility and gamma-rays and the cell response was studied by colony assays as well as the analysis of RBE of carbon ions was evolved. The survival curves of cells irradiated by heavy ions were different from those of cells irradiated by gamma-rays. And two kinds of cell showed the obvious discrepancy in response to the photon and ion irradiation. The results showed that heavy ions have special physical properties and mighty potency to kill cell in both single and fractional irradiation meanwhile it can kill tumor cells with high radioresistance more efficiently. When involved in clinical therapy, heavy ions will enhance the therapy efficiency and decrease the suffering of patients because it can impair the repair for sublethal damage of cells which can lead to fewer irradiation fractions.
Resumo:
The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+) ion beams (linear energy transfer (LET) = 96 keV mu m(-1)) and gamma-rays at the Heavy Ion Research Facility in Lanzhou (HIRFL). The numbers and types of chromatid breaks were detected using the premature chromosome condensation technique. Irradiation with C-12(6+) ions produced a majority of isochromatid break types, while chromatid breaks were dominant for irradiation with gamma-rays. Experimental results showed that the initial level of chromatid breaks is clearly related to the absorbed dose from C-12(6+), ions and gamma-rays. The (12)C(6+)ions are relatively more effective at inducing initial chromatid breaks when compared with the gamma-rays. A relative biological effectiveness (RBE) of about 2.5 resulted for the induction of initial chromatid breaks by C-12(6+) ions relative to gamma-rays in both cell lines.
Resumo:
Hypersensitive response of mammalian cells in cell killing to X- and gamma-rays has been reported at doses below 1 Gy. The purpose of this study was to examine the low dose sensitivity of human hepatoma SMMC-7721 cells irradiated with Co-60 gamma-rays and 50 MeV/u C-12 ions. Experiments using gamma-rays and charged particle irradiation were performed, particularly in the low dose range from 0 to 2 Gy. The survival effect of SMMC-7721 cells was measured by means of standard clonogenic assay in conjunction with a cell sorter. The result indicates SMMC-7721 cells showed hyper-radiosensitive response at low doses and increased radio-resistance at larger single doses for the carbon ions (LET = 45.2 keV/mu m) and the gamma-rays. However, the HRS/IRR effect caused by high-LET irradiation is different from that by low-LET radiation. This might possibly be due to the difference in the mode of energy deposition by particle beam and low-LET irradiation.
Resumo:
探测器位置分辨能力的高低是实现γ成像的一个重要指标.Segmented HPGe平面型位置灵敏探测器能够很好地给出γ射线与探测器晶体相互作用的作用点位置信息.利用由这种探测器组成的探测器阵列对~(22)Na标准源进行了γ成像实验.结果能够区分出标准源两个不同的摆放位置的细微差别,并与实际情况符合得很好.从而检验了Segmented HPGe平面型位置灵敏探测器的位置分辨能力.
Resumo:
In this work, we investigate the rescattering effects in the radiative decay Gamma(5S) -> eta(b) + gamma , which were suggested to be crucially important for understanding the anomalous largeness of the branching ratios B(Gamma(5S) -> Gamma(1S) + pi pi) and B(Gamma(5S) -> Gamma(1S) + eta). Our calculations show that the rescattering effects may enhance Gamma(Gamma(10860) -> eta(b) +gamma) by four orders, but the tetraquark structure does not. Recently the BABAR and CLEO collaborations have measured the mass of eta(b) and the branching ratios B(Gamma(2S) -> eta(b) +gamma), B(Gamma(3S) -> eta(b) +gamma). We hope that very soon, Gamma(10860) -> eta(b) + gamma) will be measured and it would be an ideal opportunity for testing whether the rescattering or the tetraquark structure is responsible for the anomaly of B(Gamma(5S) -> Gamma(nS) pi(+) pi(-))(n = 1, 2, 3)), i. e., the future measurements on the radiative decays of Gamma(5S) might be a touchstone of the two mechanisms.