754 resultados para Fuzzy logic system
Resumo:
Fuzzy logic control (FLC) systems have been applied as an effective control system in various fields, including vibration control of structures. The advantage of this approach is its inherent robustness and ability to handle non‐linearities and uncertainties in structural behavior and loading. The study evaluates the three‐dimensional benchmark control problem for a seismically excited highway bridge using an ANFIS driven hydraulic actuators. An ANN based training strategy that considers both velocity and acceleration feedback together with a fuzzy logic rule base is developed. Present study needs only 4 accelerometers and 4 fuzzy rule bases to determine the control force, instead of 8 accelerometers and 4 displacement transducers used in the benchmark study problem. The results obtained are better than that obtained from the benchmark control algorithm.
Resumo:
Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.
Resumo:
In this study, a new reactive power loss index (RPLI) is proposed for identification of weak buses in the system. This index is further used for determining the optimal locations for placement of reactive compensation devices in the power system for additional voltage support. The new index is computed from the reactive power support and loss allocation algorithm using Y-bus method for the system under intact condition and as well as critical/severe network contingencies cases. Fuzzy logic approach is used to select the important and critical/severe line contingencies from the contingency list. The inherent characteristics of the reactive power in system operation is properly addressed while determining the reactive power loss allocation to load buses. The proposed index is tested on sample 10-bus equivalent system and 72-bus practical equivalent system of Indian southern region power grid. The validation of the weak buses identification from the proposed index with that from other existing methods in the literature is carried out to demonstrate the effectiveness of the proposed index. Simulation results show that the identification of weak buses in the system from the new RPLI is completely non-iterative, thus requires minimal computational efforts as compared with other existing methods in the literature.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A divulgação de informação sobre qualidade das águas para um público não especialista é fundamental para subsidiar ações políticas e institucionais de gestão dos ambientes aquáticos. Para tanto, índices de qualidade de água têm sido propostos por serem capazes de sintetizar em um único valor ou categoria a informação normalmente descrita a partir de um conjunto extenso de variáveis químicas, físicas e biológicas de qualidade de água. A maioria das metodologias propostas para o desenvolvimento de índices de qualidade de água é baseada no conhecimento de especialistas quanto à escolha das variáveis a serem utilizadas, a ponderação da importância relativa de cada variável e métodos utilizados para agregar os dados das variáveis em um único valor. Este trabalho propõe um novo índice de qualidade de água, baseado em lógica nebulosa e direcionado para o ambiente lótico. Esse índice, o IQAFAL, foi desenvolvido com a colaboração de especialistas com ampla e comprovada experiência na área de qualidade de água. A essência do desenvolvimento de um índice, usando-se lógica nebulosa, está na capacidade dessa metodologia representar, de forma mais eficiente e clara, os limites dos intervalos de variação dos parâmetros de qualidade de água para um conjunto de categorias subjetivas, quando esses limites não são bem definidos ou são imprecisos. O índice proposto neste trabalho foi desenvolvido com base no conhecimento dos especialistas em qualidade de água do Instituto Estadual do Ambiente - INEA e aplicado aos dados de qualidade de água do Rio Paraíba do Sul, obtidos pelo INEA, nos anos de 2002 a 2009. Os resultados do IQAFAL mostraram que esse índice foi capaz de sintetizar a qualidade da água deste trecho do Rio Paraíba do Sul correspondendo satisfatoriamente às avaliações de qualidade de água descritas nos relatórios disponíveis. Verificou-se também que com essa metodologia foi possível evitar que a influência de uma variável em condições críticas fosse atenuada pela influência das outras variáveis em condições favoráveis produzindo um resultado indesejável no índice final.
Resumo:
Um problema que as empresas distribuidoras de energia elétrica convivem são as quedas repentinas no fornecimento, causando inúmeros prejuízos tanto para essas empresas quanto para seus consumidores. Essa dissertação apresentará uma ferramenta que utilizará conhecimentos de sistemas de informações geográficas junto com o uso de inferência nebulosa para orientar a disposição de veículos híbridos (elétricos e à combustão) que podem operar como mini-usinas elétricas no abastecimento de localidades que esteja necessitando de energia em um determinado momento. Para isso, será levantada uma base de dados com características dos veículos híbridos e locais necessitados, dados esses que alimentarão um sistema nebuloso agregado à ferramenta MapServer e a um SIG (Sistema de Informações Geográficas) para, dessa forma, mostrar como saída do sistema qual veículo estará mais apto naquele instante para abastecer o local da demanda de energia.
Resumo:
A partir da Lei n. 6.938 de 31 de agosto de 1981, que constituiu o Sistema Nacional do Meio Ambiente, criou-se o Conselho Nacional do Meio Ambiente e instituiu-se o Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental, a gestão ambiental pública ganhou um espaço cada vez maior nas administrações municipais, com a implementação de instrumentos de gestão ambiental propiciando aos municípios a possibilidade de ações efetivas que contribuam para uma melhor qualidade de vida a população. Esse trabalho propõe a criação de um método de classificação municipal que indicará qual o nível da gestão ambiental do município. Verificando o número de instrumentos de gestão ambiental constituído e o número de problemas ambientais ocorridos em cada município na visão do gestor local nos anos de 2006/2008. E ainda qual a influência do IDH tanto na implementação de tais instrumentos de gestão ambiental, como nas ocorrências dos problemas ambientais. Tal classificação tem a intenção de verificar se o município encontra-se bem aparelhado no que se refere à gestão ambiental, auxiliando para futuras decisões nas ações da política ambiental local. O foco desse trabalho serão os municípios dos estados de Minas Gerais, Piauí e Rio de Janeiro. Os resultados serão processados via o software MATLAB utilizando lógica nebulosa (fuzzy) e apresentados em um website utilizando as linguagens de programação JSP, HTML, JavaScript e esse website armazenado em um servidor TomCat e tais resultados serão apresentados nas formas de valores alfanuméricos em tabelas e espaciais através de mapas temáticos em uma solução sig-web. Os dados estão armazenados em um Sistema Gerenciador de Banco de Dados PostgreSQL com sua extensão espacial PostGIS, e o acesso aos mapas será feito através do servidor de mapas MapServer.
Resumo:
Este trabalho apresenta um método para reconhecimento do padrão na biodisponibilidade do ferro, através da interação com substâncias que auxiliam a absorção como vitamina C e vitamina A e nutrientes inibidores como cálcio, fitato, oxalato, tanino e cafeína. Os dados foram obtidos através de inquérito alimentar, almoço e jantar, em crianças de 2 a 5 anos da única Creche Municipal de Paraty-RJ entre 2007 e 2008. A Análise de Componentes Principais (ACP) foi aplicada na seleção dos nutrientes e utilizou-se o Algoritmo Fuzzy C-Means (FCM) para criar os agrupamentos classificados de acordo com a biodisponibilidade do ferro. Uma análise de sensibilidade foi desenvolvida na tentativa de buscar quantidades limítrofes de cálcio a serem consumidas nas refeições. A ACP mostrou que no almoço os nutrientes que explicavam melhor a variabilidade do modelo foram ferro, vitamina C, fitato e oxalato, enquanto no jantar o cálcio se mostrou eficaz na determinação da variabilidade do modelo devido ao elevado consumo de leite e derivados. Para o almoço, a aplicação do FCM na interação dos nutrientes, notou-se que a ingestão de vitamina C foi determinante na classificação dos grupos. No jantar, a classificação de grupos foi determinada pela quantidade de ferro heme na interação com o cálcio. Na análise de sensibilidade realizada no almoço e no jantar, duas iterações do algoritmo determinaram a interferência total do cálcio na biodisponibilidade do ferro.
Resumo:
O objetivo deste trabalho é avaliar os riscos de ocorrências de intrusos em um sistema de computação em nuvem para sistemas distribuídos utilizando lógica nebulosa. A computação em nuvem é um tema que vem sendo bastante abordado e vem alavancando discussões calorosas, tanto na comunidade acadêmica quanto em palestras profissionais. Embora essa tecnologia esteja ganhando mercado, alguns estudiosos encontram-se céticos afirmando que ainda é cedo para se tirar conclusões. Isto se deve principalmente por causa de um fator crítico, que é a segurança dos dados armazenados na nuvem. Para esta dissertação, foi elaborado um sistema distribuído escrito em Java com a finalidade de controlar um processo de desenvolvimento colaborativo de software na nuvem, o qual serviu de estudo de caso para avaliar a abordagem de detecção de intrusos proposta. Este ambiente foi construído com cinco máquinas (sendo quatro máquinas virtuais e uma máquina real). Foram criados dois sistemas de inferência nebulosos, para análise de problemas na rede de segurança implementados em Java, no ambiente distribuído. Foram realizados diversos testes com o intuito de verificar o funcionamento da aplicação, apresentando um resultado satisfatório dentro dessa metodologia.
Resumo:
Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão.
Resumo:
Os testes são uma atividade crucial no desenvolvimento de sistemas, pois uma boa execução dos testes podem expor anomalias do software e estas podem ser corrigidas ainda no processo de desenvolvimento, reduzindo custos. Esta dissertação apresenta uma ferramenta de testes chamada SIT (Sistema de Testes) que auxiliará no teste de Sistemas de Informações Geográficas (SIG). Os SIG são caracterizados pelo uso de informações espaciais georreferenciadas, que podem gerar um grande número de casos de teste complexos. As técnicas tradicionais de teste são divididas em funcionais e estruturais. Neste trabalho, o SIT abordará os testes funcionais, focado em algumas técnicas clássicas como o particionamento de equivalência e análise do Valor Limite. O SIT também propõe o uso de Lógica Nebulosa como uma ferramenta que irá sugerir um conjunto mínimo de testes a executar nos SIG, ilustrando os benefícios da ferramenta.
Resumo:
Este trabalho está inserido no campo da Geomática e se concentra, mais especificamente, no estudo de métodos para exploração e seleção de rotas em espaços geográficos sem delimitação prévia de vias trafegáveis. As atividades que poderiam se beneficiar de estudos desse tipo estão inseridas em áreas da engenharia, logística e robótica. Buscou-se, com as pesquisas realizadas nesse trabalho, elaborar um modelo computacional capaz de consultar as informações de um terreno, explorar uma grande quantidade de rotas viáveis e selecionar aquelas rotas que oferecessem as melhores condições de trajetória entre dois pontos de um mapa. Foi construído um sistema a partir do modelo computacional proposto para validar sua eficiência e aplicabilidade em diferentes casos de estudo. Para que esse sistema fosse construído, foram combinados conceitos de sistemas baseados em agentes, lógica nebulosa e planejamento de rotas em robótica. As informações de um terreno foram organizadas, consumidas e apresentadas pelo sistema criado, utilizando mapas digitais. Todas as funcionalidades do sistema foram construídas por meio de software livre. Como resultado, esse trabalho de pesquisa disponibiliza um sistema eficiente para o estudo, o planejamento ou a simulação de rotas sobre mapas digitais, a partir de um módulo de inferência nebuloso aplicado à classificação de rotas e um módulo de exploração de rotas baseado em agentes autônomos. A perspectiva para futuras aplicações utilizando o modelo computacional apresentado nesse trabalho é bastante abrangente. Acredita-se que, a partir dos resultados alcançados, esse sistema possa ajudar a reduzir custos e automatizar equipamentos em diversas atividades humanas.
Resumo:
Este trabalho propõe-se a descrever uma metodologia para avaliação do sistema de educação fundamental do Estado do Rio de Janeiro, que utiliza a teoria dos conjuntos nebulosos como base, no processo de inferência para geração do Indicador Avaliação do Sistema Educacional (IASE). A base de dados utilizada para criação do indicador IASE foi extraída de dados obtidos do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). Em seguida, os resultados obtidos são apresentados em um Sistema de informação Geográfica (SIG) possibilitando compreender a correlação de valores alfanuméricos e espacial das informações geradas no sistema nebuloso, de modo apoiar a tomada de decisão das ações governamentais no setor.