844 resultados para Fuzzy Lyapunov functions
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
OBJETIVO: Desenvolver e comparar dois modelos matemáticos, um deles baseado em regressão logística e o outro em teoria de conjuntos fuzzy, para definir a indicação para a realização do exame cintilográfico a partir de resultados dos exames laboratoriais. MÉTODOS: Foram identificados 194 pacientes que tiveram cálcio e paratormônio séricos medidos a partir da base de registros de cintilografia de paratiróides realizadas em laboratório de diagnóstico de São Paulo, no período de janeiro de 2000 a dezembro de 2004. O modelo de regressão logística foi desenvolvido utilizando-se o software SPSS e o modelo fuzzy, o Matlab. A performance dos modelos foi comparada utilizando-se curvas ROC. RESULTADOS: Os modelos apresentaram diferenças estatisticamente significantes (p=0,026) nos seus desempenhos. A área sob a curva ROC do modelo de regressão logística foi de 0,862 (IC 95%: 0,811-0,913) e do modelo de lógica fuzzy foi 0,887 (IC 95%: 0,840-0,933). Este último destacou-se como particularmente útil porque, ao contrário do modelo logístico, mostrou capacidade de utilizar informações de paratormônio em intervalo em que os valores de cálcio mostraram-se pouco discriminantes. CONCLUSÕES: O modelo matemático baseado em teoria de conjuntos fuzzy pareceu ser mais adequado do que o baseado em regressão logística como método para decisão da realização de cintilografia das paratiróides. Todavia, sendo resultado de um exercício metodológico, inferências sobre o comportamento do objeto podem ser impróprias, dada a não representatividade populacional dos dados.
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
Neste trabalho pretende-se introduzir os conceitos associados à lógica difusa no controlo de sistemas, neste caso na área da robótica autónoma, onde é feito um enquadramento da utilização de controladores difusos na mesma. Foi desenvolvido de raiz um AGV (Autonomous Guided Vehicle) de modo a se implementar o controlador difuso, e testar o desempenho do mesmo. Uma vez que se pretende de futuro realizar melhorias e/ou evoluções optou-se por um sistema modular em que cada módulo é responsável por uma determinada tarefa. Neste trabalho existem três módulos que são responsáveis pelo controlo de velocidade, pela aquisição dos dados dos sensores e, por último, pelo controlador difuso do sistema. Após a implementação do controlador difuso, procedeu-se a testes para validar o sistema onde foram recolhidos e registados os dados provenientes dos sensores durante o funcionamento normal do robô. Este dados permitiram uma melhor análise do desempenho do robô. Verifica-se que a lógica difusa permite obter uma maior suavidade na transição de decisões, e que com o aumento do número de regras é possível tornar o sistema ainda mais suave. Deste modo, verifica-se que a lógica difusa é uma ferramenta útil e funcional para o controlo de aplicações. Como desvantagem surge a quantidade de dados associados à implementação, tais como, os universos de discurso, as funções de pertença e as regras. Ao se aumentar o número de regras de controlo do sistema existe também um aumento das funções de pertença consideradas para cada variável linguística; este facto leva a um aumento da memória necessária e da complexidade na implementação pela quantidade de dados que têm de ser tratados. A maior dificuldade no projecto de um controlador difuso encontra-se na definição das variáveis linguísticas através dos seus universos de discurso e das suas funções de pertença, pois a definição destes pode não ser a mais adequada ao contexto de controlo e torna-se necessário efectuar testes e, consequentemente, modificações à definição das funções de pertença para melhorar o desempenho do sistema. Todos os aspectos referidos são endereçados no desenvolvimento do AGV e os respectivos resultados são apresentados e analisados.
Resumo:
We present the supersymmetric standard model three-loop beta-functions for gauge and Yukawa couplings and consider the effect of three-loop corrections on the standard running coupling analyses.
Resumo:
Este trabalho de pesquisa e desenvolvimento tem como fundamento principal o Conceito de Controlo por Lógica Difusa. Utilizando as ferramentas do software Matlab, foi possível desenvolver um controlador com base na inferência difusa que permitisse controlar qualquer tipo de sistema físico real, independentemente das suas características. O Controlo Lógico Difuso, do inglês “Fuzzy Control”, é um tipo de controlo muito particular, pois permite o uso simultâneo de dados numéricos com variáveis linguísticas que tem por base o conhecimento heurístico dos sistemas a controlar. Desta forma, consegue-se quantificar, por exemplo, se um copo está “meio cheio” ou “meio vazio”, se uma pessoa é “alta” ou “baixa”, se está “frio” ou “muito frio”. O controlo PID é, sem dúvida alguma, o controlador mais amplamente utilizado no controlo de sistemas. Devido à sua simplicidade de construção, aos reduzidos custos de aplicação e manutenção e aos resultados que se obtêm, este controlador torna-se a primeira opção quando se pretende implementar uma malha de controlo num determinado sistema. Caracterizado por três parâmetros de ajuste, a saber componente proporcional, integral e derivativa, as três em conjunto permitem uma sintonia eficaz de qualquer tipo de sistema. De forma a automatizar o processo de sintonia de controladores e, aproveitando o que melhor oferece o Controlo Difuso e o Controlo PID, agrupou-se os dois controladores, onde em conjunto, como poderemos constatar mais adiante, foram obtidos resultados que vão de encontro com os objectivos traçados. Com o auxílio do simulink do Matlab, foi desenvolvido o diagrama de blocos do sistema de controlo, onde o controlador difuso tem a tarefa de supervisionar a resposta do controlador PID, corrigindo-a ao longo do tempo de simulação. O controlador desenvolvido é denominado por Controlador FuzzyPID. Durante o desenvolvimento prático do trabalho, foi simulada a resposta de diversos sistemas à entrada em degrau unitário. Os sistemas estudados são na sua maioria sistemas físicos reais, que representam sistemas mecânicos, térmicos, pneumáticos, eléctricos, etc., e que podem ser facilmente descritos por funções de transferência de primeira, segunda e de ordem superior, com e sem atraso.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.