995 resultados para Frequency Adaptive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is presenting the modules of the Adaptive Educational Hypermedia System PCMAT, responsible for the recommendation of learning objects. PCMAT is an online collaborative learning platform with a constructivist approach, which assesses the user’s knowledge and presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module and search and retrieval module choose the most adequate learning object, based on the user's characteristics and performance, and in this way contribute to the system’s adaptability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is about PCMAT, an adaptive learning platform for Mathematics in Basic Education schools. Based on a constructivist approach, PCMAT aims at verifying how techniques from adaptive hypermedia systems can improve e-learning based systems. To achieve this goal, PCMAT includes a Pedagogical Model that contains a set of adaptation rules that influence the student-platform interaction. PCMAT was subject to a preliminary testing with students aged between 12 and 14 years old on the subject of direct proportionality. The results from this preliminary test are quite promising as they seem to demonstrate the validity of our proposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is presenting the recommendation module of the Mathematics Collaborative Learning Platform (PCMAT). PCMAT is an Adaptive Educational Hypermedia System (AEHS), with a constructivist approach, which presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module is responsible for choosing different learning resources for the platform, based on the user's characteristics and performance. Since the main purpose of an adaptive system is to provide the user with content and interface adaptation, the recommendation module is integral to PCMAT’s adaptation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May–Grünwald–Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p = 0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p = 0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p = 0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland–Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10–5 per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of an Adaptive System is to adequate its relation with the user (content presentation, navigation, interface, etc.) according to a predefined but updatable model of the user that reflects his objectives, preferences, knowledge and competences [Brusilovsky, 2001], [De Bra, 2004]. For Educational Adaptive Systems, the emphasis is placed on the student knowledge in the domain application and learning style, to allow him to reach the learning objectives proposed for his training [Chepegin, 2004]. In Educational AHS, the User Model (UM), or Student Model, has increased relevance: when the student reaches the objectives of the course, the system must be able to readapt, for example, to his knowledge [Brusilovsky, 2001]. Learning Styles are understood as something that intent to define models of how given person learns. Generally it is understood that each person has a Learning Style different and preferred with the objective of achieving better results. Some case studies have proposed that teachers should assess the learning styles of their students and adapt their classroom and methods to best fit each student's learning style [Kolb, 2005], [Martins, 2008]. The learning process must take into consideration the individual cognitive and emotional parts of the student. In summary each Student is unique so the Student personal progress must be monitored and teaching shoul not be not generalized and repetitive [Jonassen, 1991], [Martins, 2008]. The aim of this paper is to present an Educational Adaptive Hypermedia Tool based on Progressive Assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document is a survey in the research area of User Modeling (UM) for the specific field of Adaptive Learning. The aims of this document are: To define what it is a User Model; To present existing and well known User Models; To analyze the existent standards related with UM; To compare existing systems. In the scientific area of User Modeling (UM), numerous research and developed systems already seem to promise good results, but some experimentation and implementation are still necessary to conclude about the utility of the UM. That is, the experimentation and implementation of these systems are still very scarce to determine the utility of some of the referred applications. At present, the Student Modeling research goes in the direction to make possible reuse a student model in different systems. The standards are more and more relevant for this effect, allowing systems communicate and to share data, components and structures, at syntax and semantic level, even if most of them still only allow syntax integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos.