944 resultados para Fractional Smoothness
Resumo:
Nonregular two-level fractional factorial designs are designs which cannot be specified in terms of a set of defining contrasts. The aliasing properties of nonregular designs can be compared by using a generalisation of the minimum aberration criterion called minimum G2-aberration.Until now, the only nontrivial designs that are known to have minimum G2-aberration are designs for n runs and m n–5 factors. In this paper, a number of construction results are presented which allow minimum G2-aberration designs to be found for many of the cases with n = 16, 24, 32, 48, 64 and 96 runs and m n/2–2 factors.
Resumo:
Minimum aberration is the most established criterion for selecting a regular fractional factorial design of maximum resolution. Minimum aberration designs for n runs and n/2 less than or equal to m < n factors have previously been constructed using the novel idea of complementary designs. In this paper, an alternative method of construction is developed by relating the wordlength pattern of designs to the so-called 'confounding between experimental runs'. This allows minimum aberration designs to be constructed for n runs and 5n/16 less than or equal to m less than or equal to n/2 factors as well as for n/2 less than or equal to m < n.
Resumo:
Scale functions play a central role in the fluctuation theory of spectrally negative Lévy processes and often appear in the context of martingale relations. These relations are often require excursion theory rather than Itô calculus. The reason for the latter is that standard Itô calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Lévy measure. We place particular emphasis on spectrally negative Lévy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
Resumo:
An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
This brief proposes a new method for the identification of fractional order transfer functions based on the time response resulting from a single step excitation. The proposed method is applied to the identification of a three-dimensional RC network, which can be tailored in terms of topology and composition to emulate real time systems governed by fractional order dynamics. The results are in excellent agreement with the actual network response, yet the identification procedure only requires a small number of coefficients to be determined, demonstrating that the fractional order modelling approach leads to very parsimonious model formulations.
Resumo:
In the present paper we report on the experimental electron sheet density vs. magnetic field diagram for the magnetoresistance R(xx) of a two-dimensional electron system (2DES) with two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels centered around the filing factor v = 3/2 in both the two occupied electric subbands. We focused specially on the fractional levels of the second subband, whose experimental values of the magnetic field B of their minima do not obey a periodicity law in 1/|B-B(c)|, where B(c) is the critical field at the filling factor v = 3/2, and we explain this fact entirely in the framework of the composite fermions theory. We use a simple theoretical model to give a possible explanation for the fact. Copyright (c) EPLA, 2011
Resumo:
We report on integer and fractional microwave-induced resistance oscillations in a 2D electron system with high density and moderate mobility, and present results of measurements at high microwave intensity and temperature. Fractional microwave-induced resistance oscillations occur up to fractional denominator 8 and are quenched independently of their fractional order. We discuss our results and compare them with existing theoretical models. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)