886 resultados para Fire situation
Resumo:
http://www.archive.org/details/paperspresenteda00foreuoft
Towards a situation-awareness-driven design of operational business intelligence & analytics systems
Resumo:
With the swamping and timeliness of data in the organizational context, the decision maker’s choice of an appropriate decision alternative in a given situation is defied. In particular, operational actors are facing the challenge to meet business-critical decisions in a short time and at high frequency. The construct of Situation Awareness (SA) has been established in cognitive psychology as a valid basis for understanding the behavior and decision making of human beings in complex and dynamic systems. SA gives decision makers the possibility to make informed, time-critical decisions and thereby improve the performance of the respective business process. This research paper leverages SA as starting point for a design science project for Operational Business Intelligence and Analytics systems and suggests a first version of design principles.
Resumo:
This thesis examines the late seventh-century Latin Life of Columba (Vita Columbae) in a context sympathetic to the spiritual aims and formative intellectual background of its author, Adomnán of Iona. It argues that the Vita Columbae is a sophisticated work, shaped by Adomnán’s spiritual and theological concerns. This sophistication is revealed by a forensic examination of Adomnán’s representation of Columba’s sanctity through a series of miracles, in particular, miracle stories depicting divine manifestations of fire and light. This thesis considers the form and function of these miracle stories in the context of biblical, patristic and medieval interpretations of their archetypes, towards revealing the underlying influence of scriptural, hagiographical and monastic models of sanctity. Chapter one evaluates the function of the Vita Columbae, and outlines the core themes of sanctity which pervade the work, by considering the technical terminology and literary devices found in the opening prefaces in the context of the wider monastic tradition. Chapter two examines Adomnán’s use of biblical models of sanctity to establish Columba’s sanctity, and their relationship between these models and certain miraculous episodes in the Vita Columbae. Chapter three investigates Adomnán’s description of the Holy Spirit as an illuminating fire, and its significance for his portrayal of the saint, by means of a forensic examination of biblical, exegetical and hagiographical treatments of the image. Chapter four examines the missiological, soteriological and providential elements contributing to Adomnán’s portrayal of Columba’s sanctity, as conveyed through the presence of biblical models, particularly the image of the column of fire. Chapter five establishes the influence of monastic examinations of the contemplative life on Adomnán’s portrayal of Columba’s sanctity, and shows how that sanctity is confirmed in terms of his ability to contemplate divine light.
Resumo:
Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001ĝ€ "2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997ĝ€ "2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.
Resumo:
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).
Resumo:
Computer based mathematical models describing the aircraft evacuation process and aircraft fire have a role to play in the design and development of safer aircraft, in the implementaion of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost and risk involved in performing large-scale fire/evacuation experiments for the next generation 'Very Large Aircraft' (VLA) are expected to be high, the development and use of these modelling tools may become essential if these aircraft are to prove a viable reality. By describing the present capabililties and limitations of the EXODUS evacuation model and associated fire models, this paper will examine the future development and data requirements of these models.
Resumo:
In this paper we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modelling and represents an extension of this technique to situations involving the combustion of solid cellulosic hels A simple solid &el combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddydissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment The model is shown to be able to qualitatively predict behaviours similar to flashover - in the case of the open room - and backdrafl - in the case of the initially closed room.
Resumo:
This paper describes a project aimed at making Computational Fluid Dynamics (CFD) based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practise of CFD based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modelling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasising its open architecture, CFD engine and knowledge based systems.
Resumo:
This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.
Resumo:
In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.