931 resultados para Fine-pitch interconnection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate high-field ferromagnetic resonance of superparamagnetic particles with uniaxial anisotropy, In this case, since the field is large enough to saturate the magnetization, the thermal orientational fluctuations of the magnetic moment of the particle are negligible. Thus, we derive the dynamic susceptibility of the system on the basis of an independent particle model. High-field ferromagnetic resonance has been performed on fine cobalt particles, The analysis of the spectra obtained at different frequencies allows us to estimate the effective magnetic anisotropy, the gyromagnetic ratio, and the transverse relaxation time. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate high-field ferromagnetic resonance of superparamagnetic particles with uniaxial anisotropy, In this case, since the field is large enough to saturate the magnetization, the thermal orientational fluctuations of the magnetic moment of the particle are negligible. Thus, we derive the dynamic susceptibility of the system on the basis of an independent particle model. High-field ferromagnetic resonance has been performed on fine cobalt particles, The analysis of the spectra obtained at different frequencies allows us to estimate the effective magnetic anisotropy, the gyromagnetic ratio, and the transverse relaxation time. (C) 1998 Elsevier Science B.V. All rights reserved.