911 resultados para Field assisted sintering technique
Resumo:
In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.
Resumo:
We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.
Resumo:
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.
Resumo:
The majority of studies pertaining to lead retention by clays and soils have examined the mechanisms, kinetics, and adsorption isotherms using the batch experiment technique that employs solid: water extracts of 1:10 and 1:20. Field soil deposits generally have much lower gravimetric water content ranging between 9 and 45%. Given the wide disparity in the solids: water ratio employed in the batch experiment technique and that prevailing in field deposits, this paper examines the lead retention characteristics of soils at field moisture contents (6%, 13%, and 25%) using artificially lead-contaminated soil specimens. A residually derived (i.e., formed by in-situ weathering of parent rock) red soil was used to prepare the artificially contaminated soil specimens. The impact of variations in clay content on lead retention was examined by diluting the residual soil with various amounts (0 to 60%) of river sand. Soil specimens remolded at 6 and 13% moisture contents produced very stiff to hard soils on compaction, while specimens remolded at 25% moisture content existed in the slurry state. The soil specimens were contaminated with low (30mg/kg) to high (2500mg/kg) concentrations of lead ions by remolding them with 160ppm to 10,000ppm ionic lead solutions. Lead retention by soils at field moisture contents was determined by extracting the lead from the soil using a water leach test. Experimental results showed that the bulk (71 to 99%) of the added lead was retained by the soil in insoluble form at the field moisture content. Correlations between the amount of lead retained and soil/solution parameters indicated that the amounts of Pb retained at field moisture content is a function of the initial Pb addition, total sand content, effective clay porosity, and soil pH.
Resumo:
The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.
Resumo:
A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.
Resumo:
Identifying symmetry in scalar fields is a recent area of research in scientific visualization and computer graphics communities. Symmetry detection techniques based on abstract representations of the scalar field use only limited geometric information in their analysis. Hence they may not be suited for applications that study the geometric properties of the regions in the domain. On the other hand, methods that accumulate local evidence of symmetry through a voting procedure have been successfully used for detecting geometric symmetry in shapes. We extend such a technique to scalar fields and use it to detect geometrically symmetric regions in synthetic as well as real-world datasets. Identifying symmetry in the scalar field can significantly improve visualization and interactive exploration of the data. We demonstrate different applications of the symmetry detection method to scientific visualization: query-based exploration of scalar fields, linked selection in symmetric regions for interactive visualization, and classification of geometrically symmetric regions and its application to anomaly detection.
Resumo:
A numerical model to study the growth of dendrites in a pure metal solidification process with an imposed rotational flow field is presented. The micro-scale features of the solidification are modeled by the well-known enthalpy technique. The effect of flow changing the position of the dendrite is captured by the Volume of Fluid (VOF) method. An imposed rigid-body rotational flow is found to gradually transform the dendrite into a globular microstructure. A parametric study is carried out for various angular velocities and the time for merger of dendrite arms is compared with the order estimate obtained from scaling.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
In contrast to the widely reported beneficial aspects of spark plasma sintering in developing materials with better properties, we report here two interesting aspects recorded with difficult-to-sinter titanium diboride: (a) in situ formation of second phase (TiB) and (b) inferior hardness (by similar to 30%) and elastic modulus (by similar to 20%) for spark plasma sintered TiB2, with respect to hot pressed TiB2. The formation of TiB is discussed with reference to the enhanced reaction kinetics in the presence of pulsed electric field. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Magnon contribution to the resistance of ferromagnetic film like Permalloy is investigated by magnetotransport measurements. We are able to observe and distinguish Anisotropic-Magnetoresistance(AMR)(1) and Magnon Magnetoresistance(MMR)(2) contributions clearly in PLD grown Permalloy films. A linear non-saturating longitudinal MR observed in high field regime for permalloy films could never be explained using AMR but only MMR can account for it.
Resumo:
Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.
Resumo:
This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.
Resumo:
We present temperature dependent I-V measurements of short channel MoS2 field effect devices at high source-drain bias. We find that, although the I-V characteristics are ohmic at low bias, the conduction becomes space charge limited at high V-DS, and existence of an exponential distribution of trap states was observed. The temperature independent critical drain-source voltage (V-c) was also determined. The density of trap states was quantitatively calculated from V-c. The possible origin of exponential trap distribution in these devices is also discussed. (C) 2013 AIP Publishing LLC.
Resumo:
We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.