352 resultados para Faraday


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple Langmuir probe technique has been used to measure the electron density, electron temperature, and plasma potential in the late stages (>5 mu s) of a laser ablated plasma plume. In the plasma, formed following 248 nm laser irradiation of a copper target, in vacuum at a laser fluence of 2.5 J cm(-2), electron densities of similar to 10(18) m(-3) and temperatures of similar to 0.5 eV were measured. These values are comparable with those reported previously using Faraday cup detectors and optical emission spectroscopy, respectively. (C) 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of temperature on the structure of the ice Ih (0001) surface is considered through a series of molecular dynamics simulations on an ice slab. At relatively low temperatures (200K) a small fraction of surface self-interstitials (i.e. admolecules) appear that are formed exclusively from molecules leaving the outermost bilayer. At higher temperatures (ca. 250 K), vacancies start to appear in the inner part of the outermost bilayer exposing the underlying bilayer and providing sites with a high concentration of the dangling hydrogen bonds. Around 250-260 K aggregates of molecules formed on top of the outermost bilayer from self-interstitials become more mobile and have diffusivities approaching that of liquid water. At similar to 270-280 K the inner bilayer of one surface noticeably destructures and it appears that at above 285 K both surfaces are melting. The observed disparity in the onset of melting between the two sides of the slab is rationalised by considering the relationship between surface energy and the spatial distribution of protons at the surface; thermodynamic stability is conferred on the surface by maximising separations between dangling protons at the crystal exterior. Local hotspots associated with a high dangling proton density are suggested to be susceptible to pre-melting and may be more efficient at trapping species at the external surface than regions with low concentrations of protons thus potentially helping ice particles to catalyse reactions. A preliminary conclusion of this work is that only about 10-20 K below the melting temperature of the particular water potential employed is major disruption of the crystalline lattice noted which could be interpreted as being "liquid", the thickness of this film being about a nanometre.