989 resultados para Falcone, Nicholas
Resumo:
Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.
Resumo:
The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 (Δ2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 (Δ2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.
Resumo:
The tumor suppressor PTEN antagonizes phosphatidylinositol 3-kinase (PI3K), which contributes to tumorigenesis in many cancer types. While PTEN mutations occur in some melanomas, their precise mechanistic consequences have yet to be elucidated. We sought to identify novel downstream effectors of PI3K using a combination of genomic and functional tests. Microarray analysis of 53 melanoma cell lines identified 610 genes differentially expressed (P<0.05) between wild-type lines and those with PTEN aberrations. Many of these genes are known to be involved in the PI3K pathway and other signaling pathways influenced by PTEN. Validation of differential gene expression by qRT-PCR was performed in the original 53 cell lines and an independent set of 18 melanoma lines with known PTEN status. Osteopontin (OPN), a secreted glycophosphoprotein that contributes to tumor progression, was more abundant at both the mRNA and protein level in PTEN mutants. The inverse correlation between OPN and PTEN expression was validated (P<0.02) by immunohistochemistry using melanoma tissue microarrays. Finally, treatment of cell lines with the PI3K inhibitor LY294002 caused a reduction in expression of OPN. These data indicate that OPN acts downstream of PI3K in melanoma and provides insight into how PTEN loss contributes to melanoma development.
Resumo:
Purpose While a number of universities in Australia have embraced concepts such as project/problem‐based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a “critical literacy” into all engineering streams. This paper was presented at the 2004 International Conference on Engineering Education in Sustainable Development (EESD) in Barcelona, Spain, outlining a current initiative that is seeking to address the “critical literacy” dilemma. Design/methodology/approach The paper presents the positive steps taken by Australia's peak engineering body, the Institution of Engineers Australia (EA), in considering accreditation requirements for university engineering courses and its responsibility to ensure the inclusion of sustainability education material. It then describes a current initiative called the “Engineering Sustainable Solutions Program – Critical Literacies for Engineers Portfolio” (ESSP‐CL), which is being developed by The Natural Edge Project (TNEP) in partnership with EA and Unesco. Findings Content for the module was gathered from around the world, drawing on research from the publication The Natural Advantage of Nations: Business Opportunities, Innovation, and Governance in the Twenty‐first Century. Parts of the first draft of the ESSP‐CL have been trialled at Griffith University, Queensland, Australia with first year environmental engineering students, in May 2004. Further trials are now proceeding with a number of other universities and organisations nationally and internationally. Practical implications It is intended that ESSP‐CL will be a valuable resource to universities, professional development activities or other education facilities nationally and internationally. Originality/value This paper fulfils an identified information/resources need.
Resumo:
The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.