979 resultados para FTSZ-INTERACTING PROTEIN
Resumo:
Le virus de l’immunodéficience humaine de type 1 (VIH-1), l’agent étiologique du SIDA, est un rétrovirus complexe arborant plusieurs protéines accessoires : Nef, Vif, Vpr, et Vpu. Celles-ci sont impliquées dans la modulation de la réplication virale, dans l’évasion immunitaire et dans la progression de la pathogenèse du SIDA. Dans ce contexte, il a été démontré que la protéine virale R (Vpr) induit un arrêt de cycle cellulaire en phase G2. Le mécanisme par lequel Vpr exerce cette fonction est l’activation, ATR (Ataxia telangiectasia and Rad3 related)-dépendante, du point de contrôle de dommage à l’ADN, mais les facteurs et mécanismes moléculaires directement impliqués dans cette activité demeurent inconnus. Afin d’identifier de nouveaux facteurs cellulaires interagissant avec Vpr, nous avons utilisé une purification d’affinité en tandem (TAP) pour isoler des complexes protéiques natifs contenant Vpr. Nous avons découvert que Vpr s’associait avec CRL4A(VprBP), un complexe cellulaire d’E3 ubiquitine ligase, comprenant les protéines Cullin 4A, DDB1 (DNA damage-binding protein 1) et VprBP (Vpr-binding protein). Nos études ont mis en évidence que le recrutement de la E3 ligase par Vpr était nécessaire mais non suffisant pour l’induction de l’arrêt de cycle cellulaire en G2, suggérant ainsi que des événements additionnels seraient impliqués dans ce processus. À cet égard, nous apportons des preuves directes que Vpr détourne les fonctions de CRL4A(VprBP) pour induire la polyubiquitination de type K48 et la dégradation protéosomale de protéines cellulaires encore inconnues. Ces événements d’ubiquitination induits par Vpr ont été démontrés comme étant nécessaire à l’activation d’ATR. Finalement, nous montrons que Vpr forme des foyers ancrés à la chromatine co-localisant avec VprBP ainsi qu’avec des facteurs impliqués dans la réparation de l’ADN. La formation de ces foyers représente un événement essentiel et précoce dans l’induction de l’arrêt de cycle cellulaire en G2. Enfin, nous démontrons que Vpr est capable de recruter CRL4A(VprBP) au niveau de la chromatine et nous apportons des preuves indiquant que le substrat inconnu ciblé par Vpr est une protéine associée à la chromatine. Globalement, nos résultats révèlent certains des ménanismes par lesquels Vpr induit des perturbations du cycle cellulaire. En outre, cette étude contribue à notre compréhension de la modulation du système ubiquitine-protéasome par le VIH-1 et son implication fonctionnelle dans la manipulation de l’environnement cellulaire de l’hôte.
Resumo:
The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.
Resumo:
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Resumo:
Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.
Resumo:
Caspases are central players in proteolytic pathways that regulate cellular processes Such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAH15 as a novel caspase Substrate in a trial Study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence (106)DQPD/Y(110) as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrPC trafficking and tested whether this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC; however, heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.
Resumo:
The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
NAPc2, an anticoagulant protein from the hematophagous nematode Ancylostoma caninum evaluated in phase-II/IIa clinical trials, inhibits the extrinsic blood coagulation pathway by a two step mechanism, initially interacting with the hitherto uncharacterized factor Xa exosite involved in macromolecular recognition and subsequently inhibiting factor VIIa (K-i = 8.4 pM) of the factor VIIa/tissue factor complex. NAPc2 is highly flexible, becoming partially ordered and undergoing significant structural changes in the C terminus upon binding to the factor Xa exosite. In the crystal structure of the ternary factor Xa/NAPc2/selectide complex, the binding interface consists of an intermolecular antiparallel beta-sheet formed by the segment of the polypeptide chain consisting of residues 74-80 of NAPc2 with the residues 86-93 of factor Xa that is additional maintained by contacts between the short helical segment (residues 67-73) and a turn (residues 26-29) of NAPc2 with the short C-terminal helix of factor Xa (residues 233-243). This exosite is physiologically highly relevant for the recognition and inhibition of factor X/Xa by macromolecular substrates and provides a structural motif for the development of a new class of inhibitors for the treatment of deep vein thrombosis and angioplasty. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Die Alzheimer Krankheit ist eine fortschreitendende Demenzerkrankung von der in Deutschland ca. 1,6 Millionen Menschen betroffen sind. Im Gehirn der Patienten finden sich sogenannte amyloide Plaques, deren Hauptbestandteil das Aβ-Protein ist. Dieses Peptid ist ein Spaltprodukt des APP-Proteins (engl. amyloid precursor protein). APP ist das namensgebende Mitglied der APP-Proteinfamilie zu der neben APP die beiden APP-Homologen APLP1 und APLP2 (engl. amyloid precursor like protein) gehören. Obwohl inzwischen über die pathologische Rolle dieser Proteinfamilie bei der Alzheimer Krankheit vieles bekannt ist, bleiben die physiologischen Funktionen dieser Proteine bisher größtenteils ungeklärt. Die vorliegende Arbeit beschreibt erstmals einen APLP1-spezifischen Effekt auf die Ausbildung von Filopodien. Sowohl das humane als auch das murine APLP1 induzierten nach transienter Überexpression die Bildung zahlreicher filopodialer Fortsätze auf der Membran von PC12-Zellen. Vergleichbare Resultate konnten mit beiden APLP1-Proteinen auch auf der Membran von embryonalen (E18.5), cortikalen Neuronen der Ratte gezeigt werden. Dass APLP1 einen derartigen Effekt auf Neuronen und PC12-Zellen zeigt, begründet die Annahme, dass APLP1 in vivo eine Funktion bei der Entwicklung und Differenzierung von Neuronen übernimmt. Anhand von Versuchen mit deletierten APLP1-Proteinen und APLP1/APLP2-Chimärproteinen konnte gezeigt werden, dass die von Exon 5 und Exon 6 codierten Bereiche des APLP1 für die Induktion der Filopodien essentiell sind. Unter Einbeziehung von in ihrer räumlichen Struktur bereits bekannten Domänen und aufgrund von Homologievergleichen der primären Aminosäuresequenz dieser Region mit entsprechenden Bereichen der APP- bzw. APLP2-Proteine wurde die wahrscheinliche Lage der Filopodien-induzierenden Domäne innerhalb des von Exon 6 codierten Bereiches diskutiert. Es konnte ferner gezeigt werden, dass die untersuchte Induktion von Filopodien durch die sogenannte α-Sekretierung moduliert werden kann. Unter den gewählten Versuchsbedingungen war nur membranständiges APLP1, nicht aber sekretiertes APLP1 in der Lage, Filopodien zu induzieren. Abschliessend wurden Ergebnisse gezeigt, die erste Einblicke in Signalkaskaden erlauben, die von APLP1 angesteuert werden und so die Enstehung der Filopodien auslösen. Bezüglich des primären Prozesses der Signalkaskade, der Bindung von APLP1 an einen bisher unbekannten Rezeptor, wurde die Möglichkeit diskutiert, ob APP oder APLP2 oder sogar APLP1 selbst als Rezeptor fungieren könnten. Die beobachteten Prozesse nach Überexpression von APLP1 entsprechen vermutlich einer physiologischen Funktion bei der Differenzierung von Neuronen, die mit der Interaktion einer extrazellulär gelegenen Domäne mit einem Rezeptor beginnt, die Aktivierung einer Signalkaskade zur Akrinreorganisation zu Folge hat und die Entstehung filopodialer Strukturen auslöst.
Resumo:
DcuS is a membrane-integral sensory histidine kinase involved in the DcuSR two-component regulatory system in Escherichia coli by regulating the gene expression of C4-dicarboxylate metabolism in response to external stimuli. How DcuS mediates the signal transduction across the membrane remains little understood. This study focused on the oligomerization and protein-protein interactions of DcuS by using quantitative Fluorescence Resonance Energy Transfer (FRET) spectroscopy. A quantitative FRET analysis for fluorescence spectroscopy has been developed in this study, consisting of three steps: (1) flexible background subtraction to yield background-free spectra, (2) a FRET quantification method to determine FRET efficiency (E) and donor fraction (fD = [donor] / ([donor]+[acceptor])) from the spectra, and (3) a model to determine the degree of oligomerization (interaction stoichiometry) in the protein complexes based on E vs. fD. The accuracy and applicability of this analysis was validated by theoretical simulations and experimental systems. These three steps were integrated into a computer procedure as an automatic quantitative FRET analysis which is easy, fast, and allows high-throughout to quantify FRET accurately and robustly, even in living cells. This method was subsequently applied to investigate oligomerization and protein-protein interactions, in particular in living cells. Cyan (CFP) and yellow fluorescent protein (YFP), two spectral variants of green fluorescent protein, were used as a donor-acceptor pair for in vivo measurements. Based on CFP- and YFP-fusions of non-interacting membrane proteins in the cell membrane, a minor FRET signal (E = 0.06 ± 0.01) can be regarded as an estimate of direct interaction between CFP and YFP moieties of fusion proteins co-localized in the cell membrane (false-positive). To confirm if the FRET occurrence is specific to the interaction of the investigated proteins, their FRET efficiency should be clearly above E = 0.06. The oligomeric state of DcuS was examined both in vivo (CFP/YFP) and in vitro (two different donor-acceptor pairs of organic dyes) by three independent experimental systems. The consistent occurrence of FRET in vitro and in vivo provides the evidence for the homo-dimerization of DcuS as full-length protein for the first time. Moreover, novel interactions (hetero-complexes) between DcuS and its functionally related proteins, citrate-specific sensor kinase CitA and aerobic dicarboxylate transporter DctA respectively, have been identified for the first time by intermolecular FRET in vivo. This analysis can be widely applied as a robust method to determine the interaction stoichiometry of protein complexes for other proteins of interest labeled with adequate fluorophores in vitro or in vivo.
Resumo:
Aufgrund ihrer Lebensweise und -umgebung sind effiziente Strategien zur Abwehr bedrohender Einflüsse essentiell für die Porifera. Eine dieser Strategien stellen die Apoptose in höheren Metazoen, sowie ein effizientes Immunsystem dar. Diese sichern sowohl das Überleben des Organismus als auch die Entfernung beschädigter, infizierter oder redundanter Zellen. Bei Untersuchungen der Porifera auf Moleküle, die an diesen Prozessen beteiligt sind, konnten in den letzten Jahren beachtliche Erfolge erzielt werden. So konnten das in der Apoptose involvierte Protein GCDD2 (proapoptotisch), die antiapoptotischen GCBHP1 und GCBHP2 Proteine (Wiens et al., 2001), sowie ein LPS induzierbarer TNF (Wiens et al., 2007) und zwei Caspasen (Wiens et al., 2003) in Schwämmen identifiziert werden. Um diese essentiellen Mechanismen besser verstehen zu können, sollte ein möglicher Tumor-Nekrose-Faktor-Rezeptor identifiziert werden. Hierzu wurde die SpongeBase Datenbank nach Proteinen mit Todesdomänen durchsucht und diese unter Anwendung von PCR- und Screening-Techniken in einer cDNA-Bank des marinen Schwammes S. domuncula komplettiert. Im Anschluss an ihre Sequenzierung wurde ein Klon ausgewählt, dessen Todesdomäne größte Homologie zu einem TNFR zeigte. Dieser Klon SD_TNFR-like (Suberites domuncula TNFR-homologes Protein) wurde anschließend diversen Sequenz- und Strukturanalysen unterzogen. Diese offenbarten die Existenz zweier funktional bedeutsamer Domänen (Ubiquitin-like und Todesdomäne). Vor allem die Todesdomäne impliziert eine Beteiligung des Proteins an apoptotischen Prozessen. Über einen „Yeast Two Hybrid Screen“ sollten Proteine identifiziert werden, welche mit dem Ausgangsprotein interagieren. Hierbei wurde ein Protein identifiziert, das Ähnlichkeit mit einem antimikrobiellen Peptid aufweist. Dieses Protein kann analog zu einer Gruppe von antimikrobiellen Peptiden, den α-helikalen kationischen Peptiden, in drei Teile gespalten werden. Das Signalpeptid sowie ein anionisches Propeptid werden abgespalten und es entsteht ein kationisches, antimykotisch wirksames Peptid. Beide Proteine sollten, sofern sie in die Abwehrreaktionen involviert sind, durch Inkubation mit mikrobiellen Strukturen vermehrt exprimiert werden. Eine Überprüfung der Transkription mittels Northern Blot Analysen bestätigte dies für das SD_TNFR-like nach Inkubation mit LPS und TNF- α sowie für SD_Brevinin-like nach Inkubation mit LPS, PAM und Hefe. Mit der Herstellung eines rekombinanten SD_TNFR-like-Proteins wurde die Immunisierung von Kaninchen und die folgende Gewinnung eines polyklonalen SD_TNFR-like-Antikörpers ermöglicht. Dieser gestattete den Nachweis der SD_TNFR-like -Expression mittels Western Blot-Analysen sowie die stressinduzierte erhöhte Expression mittels Dot Blot-Analysen auch auf Proteinebene. Um die Funktion des SD_TNFR-like Proteins zu charakterisierten, wurde ein Test mit RAW-Blue™-Zellen durchgeführt. Die Ergebnisse implizieren, dass das Protein Teil der Immunreaktion analog der der TLR- bzw. NLR- Reaktion ist. Auch die Interaktion mit einem antimikrobiellen Protein, welches für das Überleben des Organismus und die Bekämpfung der Mikroorganismen sorgt, deutet auf eine solche Beteiligung hin. Zusätzlich wird diese These durch ein Ergebnis der Strukturanalysen unterstützt, nämlich die Identifizierung einer TRAF2 Bindestelle. TRAF2 ist ein Adapterprotein der TNFR und aktiviert Überlebensfaktoren über den NF - B-Weg. Immunohistochemische Analysen zeigten, dass das SD_TNFR-like Protein im Organismus vor allem um die Bakteriozysten, um verschiedene Mikroorganismen und am Rand des Schwammes exprimiert wird, was ebenfalls für eine immunologische Funktionsweise spricht. Auch im restlichen Gewebe wird es kontinuierlich, auch ohne vorherige LPS Inkubation exprimiert. Diese Akkumulation zeigt deutlich, dass das Protein in einen Schutzmechanismus gegen äußere Bedrohungen involviert ist. Es scheint dabei direkt an den eindringenden Mikroorganismen zu wirken. Das SD_TNFR-like ist demnach ein potentieller Bestandteil der Immunantwort des Schwammes, welches Apoptose verhindern und Überlebensmechanismen aktivieren kann. Das SD_Brevinin-like Protein besitzt antimykotische Aktivität, wie in einem antimikrobiellen Test gezeigt werden konnte. Weiterhin scheint es für das SD_TNFR-like Protein als positiver bzw. negativer Regulator von Bedeutung zu sein, der eine Reaktion entweder beendet oder die Expression von Überlebensfaktoren verstärkt. Die in dieser Arbeit präsentierten Ergebnisse und Schlussfolgerungen demonstrieren somit die Identifizierung eines neuen Schwammproteins, welches eine Rolle in der Immunantwort spielt, sowie eines neuen antimikrobiellen Peptids, welches die Wirkung des TNFR-like moduliert. Es müssen jedoch noch weitere Funktionsanalysen folgen, um den Mechanismus des SD_TNFR-like Proteins und seine Regulation genauer charakterisieren zu können