408 resultados para FENTON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monomer free hydrogel nanoparticles (nanogels) were prepared by crosslinking preformed poly(N-vinyl-2-pyrrolidone) (PVP) entrapped in the aqueous pool of hexadecyltrimethylammonium bromide reverse micelles using the Fenton reaction. The PVP nanoparticles were spherical with a dry diameter of 27 nm. The diameter of the swollen particles was ten times higher, i.e., a swelling ratio, Q, above 900, characterizing this preparation as superabsorbent. PVP nanogel swelling was dependent on bound Fe(3+) and varied with pH and ionic strength. Nanogel deswelling by salt followed the anions lyotropic series, i.e., SCN(-) < HSO(3)(-) < NO(3)(-) < I(-) < Cl(-) < CH(3)COO(-) < CF(3)SO(3)(-). The value of Q reached 6,000 in iron-free PVP nanoparticles at low pH, making this nanogel one of the most efficient swelling systems so far described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a degradation study of the pesticide atrazine using photo-assisted electrochemical methods at a dimensionally stable anode (DSA (R)) of nominal composition Ti/Ru(0.3)Ti(0.7)O(2) in a prototype reactor. The effects of current density, electrolyte flow-rate, as well as the use of different atrazine concentrations are reported. The results indicate that the energy consumption is substantially reduced for the combined photochemical and electrochemical processes when compared to the isolated systems. It is observed that complete atrazine removal is achieved at low current densities when using the combined method, thus reducing the energy required to operate the electrochemical system. The results also include the investigation of the phytotoxicity of the treated solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O ramo de lavagem de roupas é um importante setor de serviços na sociedade moderna e responsável por uma parcela significativa no consumo de água no meio urbano. No entanto, são poucas as empresas que se preocupam em lançar seus efluentes dentro de um padrão de qualidade estabelecido pelos órgãos ambientais ou, ainda, reciclar a água no processo de lavagem. Portanto, o objetivo do presente trabalho foi estudar o tratamento e a reciclagem do efluente gerado por uma lavanderia industrial. Assim, realizou-se inicialmente um estudo de caracterização do efluente e uma investigação, em laboratório, das diferentes alternativas de tratamento, entre as quais a coagulação/floculação, adsorção/coagulação/ floculação e a Reação de Fenton, os quais foram avaliados em relação a padrões físicoquímicos e ecotoxicológicos de qualidade. Nas condições otimizadas em laboratório, realizou-se o tratamento de efluentes em escala industrial. Após, avaliou-se a possibilidade de reciclagem do efluente no próprio processo de lavagem de roupas e fez-se uma avaliação de custos considerando as diferentes alternativas de processos. Por fim, realizou-se um estudo de caracterização do lodo gerado. Os resultados obtidos demonstram que o efluente bruto da lavanderia não atinge os padrões físico-químicos exigidos pela legislação e apresenta um alto grau de toxicidade no meio aquático, devendo ser tratado para lançamento no corpo hídrico receptor. O efluente tratado por coagulação/floculação melhorou significativamente a qualidade da água, porém ainda apresentou resultados insatisfatórios quanto ao parâmetro surfactantes. Os índices toxicológicos melhoraram, porém ainda mostraram um nível de toxidade elevado. O efluente tratado por adsorção/coagulação/floculação apresentou bons resultados tanto nos parâmetros físicoquímicos quanto nos ensaios de toxicidade, mostrando ser a melhor opção de processo. A aplicação deste processo em escala industrial demonstrou que o processo apresenta uma grande confiabilidade em relação a todos os parâmetros de qualidade exigidos pelo órgão ambiental e a reciclagem do efluente pode ser realizada para fins de lavagem de roupas. O tratamento através da Reação de Fenton apresentou bons resultados em relação aos parâmetros físico-químicos, porém a presença de agentes oxidantes de forma residual foi tóxica sobre os organismos avaliados. A Reação de Fenton, apesar de gerar um efluente com boas características para reciclagem, apresenta um custo de insumos no processo bastante elevado. O lodo é um fator importante o processo de tratamento. Apresenta-se rico nos elementos alumínio e cálcio e é classificado, de acordo com a NBR 10.004, como um resíduo não perigoso (Classe II - Não Inerte). Esse lodo deve ser devidamente secado e envido para um aterro de resíduos industriais. Porém, apresenta potencial para reúso como matéria-prima na construção civil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A via das quinureninas é a principal rota de degradação do aminoácido triptofano. Os metabólitos dessa via, comumente chamados de quinureninas, estão envolvidos em vários processos fisiológicos e patológicos e, recentemente, algumas quinureninas foram relacionadas à fisiopatologia de várias doenças neurodegenerativas. Tendo em vista que dados da literatura são contraditórios no que se refere à geração de espécies reativas a partir de algumas quinureninas e considerando que as concentrações de alguns desses metabólitos estão elevadas em várias doenças neurodegenerativas, este trabalho teve por objetivo investigar os efeitos in vitro de alguns intermediários da via das quinureninas, particularmente a 3-hidroxiquinurenina (3HKyn), a quinurenina (Kyn), o ácido 3-hidroxiantranílico (3HAA), o ácido antranílico (AA) e o ácido quinolínico (QA) sobre alguns parâmetros de estresse oxidativo em córtex cerebral de ratos de 30 dias de idade. Verificamos que a 3HKyn e o 3HAA diminuíram as substâncias reativas ao ácido tiobarbitúrico (TBA-RS) e a quimiluminescência em córtex cerebral de ratos jovens, o que indica um efeito antioxidante desses compostos, ao passo que a Kyn e o AA não alteraram os parâmetros de lipoperoxidação. Por outro lado, o QA aumentou a peroxidação lipídica nesta estrutura cerebral por aumentar significativamente as medidas de TBA-RS e quimiluminescência. Além disso, se pode verificar uma prevenção significativa da oxidação da GSH causada pelo 3HAA, enquanto o QA, na presença de íon ferroso e ácido ascórbico, diminuiu significativamente as concentrações de glutationa reduzida, o que indica que esse efeito seja mediado por radicais hidroxila gerados através da reação de Fenton. Já a 3HKyn, a Kyn e o AA não alteraram significativamente as concentrações de GSH. Também se verificou que a 3HKyn diminuiu a oxidação do diacetato de 2, 7-diclorofluoresceína, além de mostrar a propriedade de seqüestrar radicais peroxila e hidroxila. Por outro lado, o 3HAA somente seqüestrou radicais peroxila, sugerindo que a estrutura orto-aminofenólica é essencial para o composto possuir propriedades antioxidantes. Com o objetivo de verificar se o tempo de exposição à 3HKyn alterava a sua atividade antioxidante, determinamos a reatividade antioxidante total (TAR) e os valores de TBA-RS em células C6 cultivadas de glioma de ratos ao longo de 48 h na ausência (controle) ou presença de 3HKyn. Os resultados demonstraram um aumento da TAR e uma diminuição das TBA-RS pela 3HKyn em tempos curtos de exposição (1-6 horas), sendo que o metabólito não alterou significativamente esses parâmetros em tempos maiores de exposição, sugerindo uma diminuição da capacidade antioxidante da 3HKyn ao longo do tempo. Também verificamos uma diminuição do potencial antioxidante total (TRAP) e da TAR pelo QA em homogeneizado de córtex cerebral Finalmente, foi evidenciado qua a 3HKyn, na concentração de 100 µM, foi capaz de prevenir os efeitos tóxicos causados pelo QA e pelo ácido glutárico (GA). O GA é a principal neurotoxina que se encontra acumulada na acidemia glutárica tipo I. Em resumo, nossos resultados sugerem um efeito antioxidante da 3HKyn e do 3HAA e um efeito pró-oxidante do QA in vitro em córtex cerebral de ratos jovens. As alterações provocadas pelas várias quinureninas foram obtidas nas concentrações de 10, 100 e 500 µM. Embora não saibamos as concentrações dessas substâncias em doenças neurodegenerativas em que eles se acumulam, é possível que, em uma situação in vivo, a produção de substâncias antioxidantes através da rota das quinureninas poderia contrabalançar os efeitos tóxicos causados por outros metabólitos como o QA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decoction of Brazilian pepper tree barks (Schinus terebinthifolius, Raddi), is used in medicine as wound healing and antiinflamatory. Once extracts from this plant are used for acceleration of scar s process, it is important to study their mutagenic and genotoxic potential. In previous works in our laboratory, it was observed mutagenicity caused by the decoction when in high concentrations. Among the chemical compounds of this plant that could be able to induce mutation, the flavonoids were the only group that was referred to have either an oxidant or antioxidant potential. The flavonoids were isolated, purified and quantified by adsorptive column chromatography under silica gel, bacterial and in vitro genotoxic tests were realized to determine if the flavonoids were the responsible agents for this mutagenicity found. The tests realized with plasmidial DNA were indicative that the flavonoids are probably genotoxic, due to the presence of correlation between increase of the flavonoid concentration and in plasmidial DNA double strand breakage visualized in agarose gel, as well as they were capable to generated abasic sites shown by the in vitro treatment with exonuclease III. The same tests with plasmidial DNA in the presence of copper [10 µM] and of a Tris-HCl pH 7.5 [10 µM] buffer were realized with the isolated flavonoids to determine if there would be or not participation of reactive oxygen species (ROS). The transformation of plasmidial DNA in different bacterial strains proficient and deficient in DNA repair enzymes in the presence or not of a Tris-HCl buffer, suggests that the enzymes that repair oxidative lesions are necessary to repair the lesions generated by the flavonoids and that ROS are generated and are necessary to promote the lesions. Bacterial tests with Escherichia coli strains of the CC collection (deficient or not for DNA repair enzymes), showed that the flavonoids are able to increase the frequency of mutations, mainly in strains mutated in repair enzymes (MutM, MutY-glicosylases and double mutant), suggesting that these agents are responsible for the enhancement in the mutation rate. In order to determine the mutation spectrum caused by the flavonoids of the Brazilian pepper tree stem bark, plasmidial DNA previously treated with the flavonoids were transformed in bacterial strains deficient and proficient in the DNA repair enzymes, followed by a blue-white selection with X-gal, DNA amplification by PCR and sequencing the positive mutant clones. Analysis of the mutants obtained from strains CC104, CC104mutM, CC104mutY, CC104mutMmutY, BW9101, BW9109 indicated a predominance of some mutations like G:C to C:G that can be correlated with the origin of 8-oxoG, due to oxidative lesions caused by the flavonoids. So it can concluded that the flavonoid isolated or in fractions enriched on them are genotoxic and mutagenic, and their mutations are predominantly oxidative, mediated by ROS, and the lesions are recognized by the BER system. In this way it is proposed that the flavonoids can act in two different ways to generate the DNA lesion: 1. in a Fenton-like reaction, when the flavonoid are in the presence of metal ions and that together with the water generate ROS that promotes the DNA lesions; 2. in another way the lesions can be generated by the formation of ROS due to the internal chemical structure of the flavonoid molecule due to the quantity and location of hydroxyl groups, and so producing the DNA lesions, those lesions can be directly (suggested by the in vitro experiments) or indirectly done (supported by the experiments using the CC bacterial strains)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main impacts to the environment is the water pollution, where the industrial sector is one of the main sources of this problem. In order to search for a solution, the industrial sector is looking forward to new technologies to treat its wastewaters with the goal to reuse the water in the own process. In this mode, the treatment presents a reduction in its costs with the water suply. One of these technologies that are getting more and more applications is the advanced oxidative processes (AOP´s). In this work two industrial wastewaters have been studied, i.e., containing polymers and pharmacus. In the case of the wastewaters with polymers the UV/H2O2 process has been applied with a systematic series of experiments, using irradiation from a mercury lamp and also solar. The following variables of the UV/H2O2 process for the polymers wastewaters have been studied systematically with the lamp reactor: mode of addition of hydrogen peroxide, temperature, time of reaction, hydrogen peroxide concentration and power of the lamp (80, 125, 250 and 400W). The results demonstrated to be satisfactory, obtaining rates of organic charge removal of 100% in 120 minutes of reaction. The studied variables for the experiments with solar irradiation using polymers wastewaters were only the time of reaction, the mode of addition and concentration of the hydrogen peroxide. The results with the solar irradiation demonstrated to be not satisfactory, reaching maximum of 22% of TOC removal in 240 minutes of reaction. This is in accordance with the fact that the solar source has only 5% of low UV irradiation. With respect to the photodegradation of the pharmacus wastewaters, the process UV/H2O2 and photo-Fenton have been applied. As a source of photons, in this case, a mercury UV lamp of 80 W has been used. The studied variables for the experiments with artificial irradiation with the pharmacus wastewaters were: initial concentration of the pollutant, concentration of Fe2+ and time of reaction. The results demonstrated a degree of degradation fairly satisfactory, showing a maximum conversion value of 46% in 120 minutes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of colored and alkaline effluent has been a challenge to the textile industry. An alternative to remove the colors of those effluents is applying magnesium chloride as a coagulant agent. The magnesium ion, in high pH, hydrolyzes itself, forming the magnesium hydroxide which has a large adsorptive area and positive electrostatic charges able to act as an efficient coagulant. The bittern wastewater from the salt industries has been studied as a potential font of this magnesium ion. Nowadays, this bittern wastewater is evicted into the sea, without any treatment or other use. This thesis has evaluated the potential of applying the wastewater from the salt industries in the treatment of dyeing effluent containing indigo dye and alkaline pH. All the experiments were made in jar tests simulating the chemical coagulation, flocculation and decantation steps ranging the pH and the concentration of magnesium ion. Were obtained removals between 96% and 76% for turbidity, apparent color, and true color, respectively, using 200mg/L Mg2+. The reduction of costs with acid, when were used the salt industries wastewater, comparing with Al2(SO4)3, was 62%. For the degradation of organic matter remaining in the clarified, around 900 mg/L, was applyed the advanced process of oxidation: photo-Fenton. The preliminary results showed 57% reduction in DOC. According to the results obtained, the salt industries wastewater can be applied, as coagulant, in the physical-chemical treatment of the denim dyeing wastewater, so it is not necessary a previous adjust of pH, efficiently and economically

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An evaluation project was conducted on the technique of treatment for effluent oil which is the deriving process to improve cashews. During the evaluation the following techniques were developed: advanced processes of humid oxidation, oxidative processes, processes of biological treatment and processes of adsorption. The assays had been carried through in kinetic models, with an evaluation of the quality of the process by means of determining the chemical demand of oxygen (defined as a technique of control by means of comparative study between the available techniques). The results demonstrated that the natural biodegradation of the effluent ones is limited, as result using the present natural flora in the effluent one revealed impracticable for an application in the industrial systems, independent of the evaluation environment (with or without the oxygen presence). The job of specific microorganisms for the oily composite degradation developed the viability technique of this route, the acceptable levels of inclusion in effluent system of treatment of the improvement of the cashew being highly good with reasonable levels of removal of CDO. However, the use combined with other techniques of daily pay-treatment for these effluent ones revealed to still be more efficient for the context of the treatment of effluent and discarding in receiving bodies in acceptable standards for resolution CONAMA 357/2005. While the significant generation of solid residues the process of adsorption with agroindustrial residues (in special the chitosan) is a technical viable alternative, however, when applied only for the treatment of the effluent ones for discarding in bodies of water, the economic viability is harmed and minimized ambient profits. Though, it was proven that if used for ends of I reuse, the viability is equalized and justifies the investments. There was a study of the photochemistry process which have are applicable to the treatment of the effluent ones, having resulted more satisfactory than those gotten for the UV-Peroxide techniques. There was different result on the one waited for the use of catalyses used in the process of Photo. The catalyses contained the mixing oxide base of Cerium and Manganese, incorporated of Potassium promoters this had presented the best results in the decomposition of the involved pollutants. Having itself an agreed form the gotten photochemistry daily paytreatment resulted, then after disinfection with chlorine the characteristics next the portability to the water were guarantee. The job of the humid oxidation presented significant results in the removal of pollutants; however, its high cost alone is made possible for job in projects of reuses, areas of low scarcity and of raised costs with the capitation/acquisition of the water, in special, for use for industrial and potable use. The route with better economic conditions and techniques for the job in the treatment of the effluent ones of the improvement of the cashew possesses the sequence to follow: conventional process of separation water-oil, photochemistry process and finally, the complementary biological treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min