936 resultados para FACTOR PROTEIN-LEVELS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 mg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF). HIF governs the expression of over a hundred hypoxia-inducible genes that regulate a number of cellular functions such as angiogenesis, glucose metabolism and cell migration. Therefore the activity of HIF must be tightly governed. HIF is regulated by a family of prolyl hydroxylase enzymes, PHDs, which mark HIF for destruction in normoxia. Under hypoxic conditions PHDs lose much of their enzymatic activity as they need molecular oxygen as a cofactor. Out of the three PHDs (PHD1, 2 and 3) PHD2 has been considered to be the main HIF-1 regulator in normoxic conditions. PHD3 on the other hand shows the most robust induction in response to oxygen deprivation and it has been implied as the main HIF-1 regulator under prolonged hypoxia. SQSTM1/p62 (p62) is an adaptor protein that functions through its binding motifs to bring together proteins in order to regulate signal transduction. In non-stressed situations p62 levels are kept low but its expression has been reported to be upregulated in many cancers. It has a definitive role as an autophagy receptor and as such it serves a key function in cancer cell survival decisions. In my thesis work I evaluated the significance of PHD3 in cancer cell and tumour biology. My results revealed that PHD3 has a dual role in cancer cell fate. First, I demonstrated that PHD3 forms subcellular protein aggregates in oxygenated carcinoma cells and that this aggregation promotes apoptosis induction in a subset of cancer cells. In these aggregates an adaptor protein SQSTM1/p62 interacts with PHD3 and in so doing regulates PHD3 expression. SQSTM1/p62 expression is needed to keep PHD3 levels low in normoxic conditions. Its levels rapidly decrease in response to hypoxia allowing PHD3 protein levels to be upregulated and the protein to be diffusely expressed throughout the cell. The interaction between PHD3 and SQSTM1/p62 limits the ability of PHD3 to function on its hydroxylation target protein HIF-1alpha. Second, the results indicate that when PHD3 is upregulated under hypoxia it protects cancer cells by allowing cell cycle to proceed from G1 to S-phase. My data demonstrates that PHD3 may either cause cell death or protect the cells depending on its expression pattern and the oxygen availability of tumours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells communicate, or signal, with each other constantly to ensure proper functioning of tissues and organs. Cell signaling is often performed by interplay of receptors and ligands that bind these receptors. ErbB receptors (epidermal growth factor receptors, EGFR, HER) bind extracellular growth factors and transduce these signals inside of cells. ErbB dysfunction promotes carcinogenesis, and also results in numerous defects during normal development. This study focused on the functions of one member of the ErbB receptor family, ErbB4, and growth factor, neuregulin-1 (NRG-1), that can bind and activate ErbB4. This study aimed to find novel functions of ErbB4 and NRG-1. Hypoxia, or deficiency of oxygen, is common in cancer and ischemic conditions. One of the key findings of the work was the identification and characterization of a cross-talk between ErbB4 and Hypoxia-inducible factor 1α (HIF-1α), the central mediator of hypoxia signaling. ErbB4 activation by NRG-1 was found to increase HIF-1α activity. Interestingly, this regulation occurred in reciprocal manner as HIF-1α was also able to increase protein levels of NRG-1 and ErbB4. Moreover, expression of NRG-1 and ErbB4 was associated with HIF activity in vivo in human clinical samples and in mice. Reduction of functional ErbB4 in developing zebrafish embryos resulted in defects in development of the skeletal muscles. To study ErbB4 functions in pathological situation in humans, clinical samples of serous ovarian carcinoma were analyzed using tissue microarrays and real-time RT-PCR. A specific isoform of ErbB4, CYT-1, was associated with poor survival in serous ovarian cancer and increased anchorage independent growth of ovarian cancer cells in vitro. These observations demonstrate that ErbB4 and NRG-1 are essential regulators of cellular response to hypoxia, of development, and of ovarian carcinogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Upper gastrointestinal endoscopy is often accompanied by tachycardia which is known to be an important pathogenic factor in the development of myocardial ischemia. The pathogenesis of tachycardia is unknown but the condition is thought to be due to the endocrine response to endoscopy. The purpose of the present study was to investigate the effects of sedation on the endocrine response and cardiorespiratory function. Forty patients scheduled for diagnostic upper gastrointestinal endoscopy were randomized into 2 groups. While the patients in the first group did not receive sedation during upper gastrointestinal endoscopy, the patients in the second group were sedated with intravenous midazolam at the dose of 5 mg for those under 65 years or 2.5 mg for those aged 65 years or more. Midazolam was administered by slow infusion. In both groups, blood pressure, ECG tracing, heart rate, and peripheral oxygen saturation (SpO2) were monitored during endoscopy. In addition, blood samples for the determination of cortisol, glucose and C-reactive protein levels were obtained from patients in both groups prior to and following endoscopy. Heart rate and systolic arterial pressure changes were within normal limits in both groups. Comparison of the two groups regarding the values of these two parameters did not reveal a significant difference, while a statistically significant reduction in SpO2 was found in the sedation group. No significant differences in serum cortisol, glucose or C-reactive protein levels were observed between the sedated and non-sedated group. Sedation with midazolam did not reduce the endocrine response and the tachycardia developing during upper gastrointestinal endoscopy, but increased the reduction in SpO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of recombinant human growth hormone (rhGH) on the intestinal mucosa barrier of septic rats and explore its possible mechanism. Female Sprague-Dawley rats were randomized into three groups: control, Escherichia coli-induced sepsis (S) and treatment (T) groups. Groups S and T were subdivided into subgroups 1d and 3d, respectively. Expression of liver insulin-like growth factor-1 (IGF-1) mRNA, Bcl-2 and Bax protein levels and the intestinal Bax/Bcl-2 ratio, and plasma GH and IGF-1 levels were determined. Histological examination of the intestine was performed and bacterial translocation was determined. rhGH significantly attenuated intestinal mucosal injuries and bacterial translocation in septic rats, markedly decreased Bax protein levels, inhibited the decrease of Bcl-2 protein expression and maintained the Bax/Bcl-2 ratio in the intestine. rhGH given after sepsis significantly improved levels of plasma GH (T1d: 1.28 ± 0.24; T3d: 2.14 ± 0.48 µg/L vs S1d: 0.74 ± 0.12; S3d: 0.60 ± 0.18 µg/L; P < 0.05) and IGF-1 (T1d: 168.94 ± 65.67; T3d: 201.56 ± 64.98 µg/L vs S1d: 116.72 ± 13.96; S3d: 107.50 ± 23.53 µg/L; P < 0.05) and expression of liver IGF-1 mRNA (T1d: 0.98 ± 0.20; T3d: 1.76 ± 0.17 vs S1d: 0.38 ± 0.09; S3d: 0.46 ± 0.10; P < 0.05). These findings indicate that treatment with rhGH had beneficial effects on the maintenance of the integrity of the intestinal mucosa barrier in septic rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6%, P < 0.05) and at 72 h (34.5 vs 93.5%, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Psychological factors can be correlated with temporomandibular disorders (TMDs), but the mechanisms are unknown. In the present study, we examined the microstructural changes and expression of proinflammatory cytokines in mandibular condylar cartilage of the temporomandibular joint (TMJ) in a psychological stress animal model. Male Sprague-Dawley rats (8 weeks old, 210 ± 10 g) were randomly divided into 3 groups: psychological stress (PS, N = 48), foot shock (FS, N = 24), and control (N = 48). After inducing psychological stress using a communication box with the FS rats for 1, 3, or 5 weeks, PS rats were sacrificed and compared to their matched control littermates, which received no stress and were killed at the same times as the PS rats. Body and adrenal gland weight were measured and corticosterone and adrenocorticotropic hormone levels were determined by radioimmunoassay. After hematoxylin-eosin staining for histological observation, the ultrastructure of the TMJ was examined by scanning electron microscopy. Transcription and protein levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were evaluated by ELISA and semi-quantitative RT-PCR. The PS group showed a significantly higher adrenal gland weight after 3 weeks of stress and higher hormone levels at weeks 1, 3, and 5. Histopathological changes and thinning cartilage were apparent at weeks 3 and 5. In the PS group, TNF-α increased at 1, 3, and 5 weeks and IL-1β increased significantly after 1 and 3 weeks of stress, and then decreased to normal levels by 5 weeks. Psychological stress increased plasma hormone levels and RT-PCR indicated increased IL-1β and TNF-α expression in the TMJ in a time-dependent manner. These results suggest that cytokine up-regulation was accompanied by stress-induced cartilage degeneration in the mandibular condyle. The proinflammatory cytokines play a potential role in initiating the cartilage destruction that eventually leads to the TMDs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM) for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the effect of propofol (Prop) administration (10 mg kg-1 h-1, intravenously) on lipopolysaccharide (LPS)-induced acute lung injury and its effect on cluster of differentiation (CD) 14 and Toll-like receptor (TLR) 4 expression in lung tissue of anesthetized, ventilated rats. Twenty-four male Wistar rats were randomly divided into three groups of 8 rats each: control, LPS, and LPS+Prop. Lung injury was assayed via blood gas analysis and lung histology, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were determined in bronchoalveolar lavage fluid using ELISA. Real-time polymerase chain reaction was used to detect CD14 and TLR4 mRNA levels, and CD14 and TLR4 protein expression was determined by Western blot. The pathological scores were 1.2 ± 0.9, 3.3 ± 1.1, and 1.9 ± 1.0 for the control, LPS, and LPS+Prop groups, respectively, with statistically significant differences between control and LPS groups (P < 0.05) and between LPS and LPS+Prop groups (P < 0.05). The administration of LPS resulted in a significant increase in TNF-α and IL-1β levels, 7- and 3.5-fold, respectively (P < 0.05), while treatment with propofol partially blunted the secretion of both cytokines (P < 0.05). CD14 and TLR4 mRNA levels were increased in the LPS group (1.48 ± 0.05 and 1.26 ± 0.03, respectively) compared to the control group (1.00 ± 0.20 and 1.00 ± 0.02, respectively; P < 0.05), while propofol treatment blunted this effect (1.16 ± 0.05 and 1.12 ± 0.05, respectively; P < 0.05). Both CD14 and TLR4 protein levels were elevated in the LPS group compared to the control group (P < 0.05), while propofol treatment partially decreased the expression of CD14 and TLR4 protein versus LPS alone (P < 0.05). Our study indicates that propofol prevents lung injury, most likely by inhibition of CD14 and TLR4 expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study aimed to investigate visceral adipose tissue-specific serpin (vaspin) concentrations in serum and term placentas and relate these values to insulin resistance and lipid parameters in women with gestational diabetes mellitus (GDM). A total of 30 GDM subjects and 27 age-matched pregnant women with normal glucose tolerance (NGT, control) were included. Serum glucose, glycated hemoglobin (HbA1c), lipid profile, insulin, and vaspin were measured at the end of pregnancy, and homeostasis model of assessment-insulin resistance (HOMA-IR) values were calculated. Vaspin mRNA and protein levels in placentas were measured by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Serum vaspin levels were significantly lower in the GDM group than in controls (0.49±0.24 vs 0.83±0.27 ng/mL, respectively; P<0.01). Three days after delivery, serum vaspin levels were significantly decreased in subjects with GDM (0.36±0.13 vs0.49±0.24 ng/mL, P<0.01). However, in the GDM group, serum vaspin levels were not correlated with the parameters evaluated. In contrast, in the control group, serum vaspin levels were positively correlated with triglycerides (TG; r=0.45, P=0.02) and very low-density lipoprotein cholesterol (VLDL-C; r=0.42, P=0.03). Placental mRNA vaspin (0.60±0.32 vs0.68±0.32, P=0.46) and protein (0.30±0.08 vs0.39±0.26; P=0.33) levels in the GDM group did not differ significantly from those in the control group, but were negatively correlated with neonatal birth weight in the GDM group (r=-0.48, P=0.03; r=-0.88; P<0.01). Our findings indicated that vaspin may be an important adipokine involved in carbohydrate and lipid metabolism and may also play a role in fetal development.