924 resultados para Eye-blink startle
Resumo:
This paper contests traditional analyses of high policing, suggesting that it needs to be decoupled (in theoretical terms) from its umbilical linkage to public actors and the preservation and augmentation of state authority. Arguing that conventional conceptualizations of high policing fail to acknowledge the role of private actors, we adopt the term `private high policing' to more accurately reflect the complexity of this paradigm. In particular, we note a long legacy of protecting dominant interests within corporate power structures, as well as increased involvement in outsourced security services for Western states. This has reached its zenith in the recent conflict/reconstruction efforts in Iraq. Eschewing conventional notions of the `proxy' debate, we propose a more complex relationship of obfuscation whereby both public and private high policing actors cross-permeate and coalesce in the pursuit of symbiotic state and corporate objectives.
Resumo:
Primary Objective: To investigate the utility of using a new method of assessment for deficits in selective visual attention (SVA). Methods and Procedures: An independent groups design compared six participants with brain injuries with six participants from a non-brain injured control group. The Sensomotoric Instruments Eye Movement system with remote eye-tracking device (eye camera), and 2 sets of eight stimuli were employed to determine if the camera would be a sensitive discriminator of SVA in these groups. Main Outcomes and Results: The attention profile displayed by the brain injured group showed that they were slower, made more errors, were less accurate, and more indecisive than the control group. Conclusions: The utility of eye movement analysis as an assessment method was established, with implications for rehabilitation requiring further development. Key words: selective visual attention, eye movement analysis, brain injury
Resumo:
Objectives: It is increasingly important to develop predictors of treatment response and outcome in schizophrenia. Neuropsychological impairments, particularly those reflecting frontal lobe function, appear to predict poor outcome. Eye movement abnormalities probably also reflect frontal lobe deficits. We wished to see if these two aspects of schizophrenia were correlated and whether they could distinguish a treatment resistant from a treatment responsive group. Methods: Ten treatment resistant schizophrenic patients were compared with ten treatment responsive patients on three eye movement paradigms (reflexive saccades, antisaccades and smooth pursuit), clinical psychopathology (BPRS, SANS and CGI) and a neuropsychological test battery designed to detect frontal lobe dysfunction. Ten aged-matched controls also carried out the eye movement tasks. Results: Both treatment responsive (p = 0.038) and treatment resistant (p = 0.007) patients differed significantly from controls on the antisaccade task. The treatment resistant group had a higher error rate than the treatment responsive group, but the difference was not statistically significant. Similar poor neuropsychological test performance was found in both groups. Conclusions: To demonstrate the biological differences characteristic of treatment resistance, larger sample sizes and wider differences in outcome between the two groups are necessary.
Resumo:
Purpose: Retinal progenitor cells (RPCs) and retinal stem cells (RSCs) from rodents and humans have been isolated and characterized in vitro. Transplantation experiments have confirmed their potential as tools for cell replacement in retinal degenerative diseases. The pig represents an ideal pre-clinical animal model to study the impact of transplantation because of the similarity of its eye to the human eye. However, little is known about porcine RPCs and RSCs. We aimed to identify and characterize in vitro RPCs and RSCs from porcine ocular tissues. Methods: Cells from different subregions of embryonic, postnatal and adult porcine eyes were grown in suspension sphere culture in serum-free medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Growth curves and BrdU incorporation assays were performed to establish the proliferative capacity of isolated porcine retina-derived RPCs and ciliary epithelium (CE)-derived RSCs. Self-renewal potential was investigated by subsphere formation assays. Changes in gene expression were assayed by reverse transcription polymerase chain reaction (RT-PCR) at different passages in culture. Finally, differentiation was induced by addition of serum to the cultures and expression of markers for retinal cell types was detected by immunohistochemical staining with specific antibodies. Results: Dissociated cells from embryonic retina and CE at different postnatal ages generated primary nestin- and Pax6-immunoreactive neurosphere colonies in vitro in numbers that decreased with age. Embryonic and postnatal retina-derived RPCs and young CE-derived RSCs displayed self-renewal capacity, generating secondary neurosphere colonies. However, their self-renewal and proliferation capacity gradually decreased and they became more committed to differentiated states with subsequent passages. The expansion capacity of RPCs and RSCs was higher when they were maintained in monolayer culture. Porcine RPCs and RSCs could be induced to differentiate in vitro to express markers of retinal neurons and glia. Conclusions: Porcine retina and CE contain RPCs and RSCs which are undifferentiated, self-renewing and multipotent and which show characteristics similar to their human counterparts. Therefore, the pig could be a useful source of cells to further investigate the cell biology of RPCs and RSCs and it could be used as a non-primate large animal model for pre-clinical studies on stem cell-based approaches to regenerative medicine in the retina.
Resumo:
Aqueous humor is actively produced in the ciliary epithelium of the anterior chamber and has important functions for the eye. Under normal physiological conditions, the inflow and outflow of the aqueous humor are tightly regulated, but in the pathologic state this balance is lost. Aqueous outflow involves structures of the anterior chamber and experiences most resistance at the level of the trabecular meshwork (TM) that acts as a filter. The modulation of the TM structure regulates the filter and its mechanism remains poorly understood. Proteomic analyses have identified cochlin, a protein of poorly understood function, in the glaucomatous TM but not in healthy control TM from human cadaver eyes. The presence of cochlin has subsequently been confirmed by Western and immunohistochemical analyses. Functionally, cochlin undergoes multimerization induced by shear stress and other changes in the microenvironment. Cochlin along with mucopolysaccharide deposits have been found in the TM of glaucoma patients and in the inner ear of subjects affected by the hearing disorder DNFA9, a late onset, progressive disease that also involves alterations in fluid shear regimes. In vitro, cochlin induces aggregation of primary TM cells suggesting a role in cell adhesion, possibly in mechanosensation, and in modulation of the TM filter.