983 resultados para Expression pattern


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AbstractPlants continuously grow during their complete life span and understanding the mechanisms that qualitatively regulate their traits remains a challenging topic in biology. The hormone auxin has been identified as a crucial molecule for shaping plant growth, as it has a role in most developmental processes. In the root, the directional, so-called polar transport of auxin generates a peak of concentration that specifies and maintains the stem cell niche and a subsequent gradient of decreasing concentration that also regulates cell proliferation and differentiation. For these reasons, auxin is considered the main morphogen of the root, as it is fundamental for its organization and maintenance. Recently, in Arabidopsis thaliana, a natural variation screen allowed the discovery of BREVIS RADIX (BRX) gene as a limiting factor for auxin responsive gene expression and thus for root growth.In this study, we discovered that BRX is a direct target of auxin that positively feeds back on auxin signaling, as a transcriptional co-regulator, through interaction with the Auxin Response Factor (ARF) MONOPTEROS (MP), modulating the auxin gene response magnitude during the transition between division and differentiation in the root meristem. Moreover, we provide evidence that BRX is activated at the plasma membrane level as an associated protein before moving into the nucleus to modulate cellular growth.To investigate the discrepancy between the auxin concentration and the expression pattern of its downstream targets, we combined experimental and computational approaches. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and with positive auto- regulatory feedback through plasma- membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response. RésuméLes plantes croissent continuellement tout au long de leur cycle de vie. Comprendre et expliquer les mécanismes impliqués dans ce phénomène reste à l'heure actuelle, un défi. L'hormone auxine a été identifiée comme une molécule essentielle à la régulation de la croissance des plantes, car impliquée dans la plupart des processus développementaux. Dans la racine, le transport polaire de l'auxine, par la génération d'un pic de concentration, spécifie et maintient la niche de cellules souches, et par la génération d'un gradient de concentration, contrôle la prolifération et la différentiation cellulaire. Puisque l'auxine est essentielle pour l'organisation et la maintenance du système racinaire, il est considéré comme son principal morphogène. Récemment, dans la plante modèle, Arabidopsis thalinana, un criblage des variations génétique a permis d'identifier le gène Brevis radix (BRX) comme facteur limitant l'expression des gènes de réponse à l'auxine et par là même, la croissance de la racine.Dans ce travail, nous avons découvert que BRX est une cible direct de l'auxine qui rétroactive positivement le signalement de l'hormone, agissant ainsi comme un régulateur transcriptionnel à travers l'interaction avec la protéine Monopteros (MP) de la famille des facteurs de réponse à l'auxine (Auxin Responsive Factor, ARF), et modulant ainsi la magnitude de la réponse des gènes reliés à l'auxine durant la division et la différentiation cellulaire dans le méristème de la racine. De plus, nous fournissons des preuves que BRX est activées au niveau de la membrane plasmique, tel une protéine associée se déplaçant à l'intérieur du noyau et modulant la croissance cellulaire.Pour mener à bien l'investigation des divergences entre la concentration de l'auxine et les schémas d'expression de ses propres gènes cibles, nous avons combiné les approches expérimentales et computationnelles. Les profiles d'expressions déviant du gradient d'auxine pourraient seulement être modéliser après intersection de l'activité de l'auxine avec les schémas différentiels d'endocytose observés et les boucles de rétroaction positives et autorégulatrices par le transfert de BRX de la membrane plasmique au noyau. Puisque BRX est requis pour l'expression de certains gènes cibles des facteurs de réponse à l'auxine, nos données suggèrent une contribution dépendante d'une endocytose spécifique au type de cellule dans la perception transcriptionnelle à l'auxine Cette contribution soutient l'expression d'un sous-set de gène de réponse à l'auxine dans la division du méristème racinaire et la zone de transition, et par conséquent, est essentielle pour la croissance méristematique. Ainsi, le schéma d'endocytose fournit des informations positionnelles spécifiques à la modulation de la réponse à l'auxine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mice deficient in CCR7 signals show severe defects in lymphoid tissue architecture and immune response. These defects are due to impaired attraction of CCR7+ DC and CCR7+ T cells into the T zones of secondary lymphoid organs and altered DC maturation. It is currently unclear which CCR7 ligand mediates these processes in vivo as CCL19 and CCL21 show an overlapping expression pattern and blocking experiments have given contradictory results. In this study, we addressed this question using CCL19-deficient mice expressing various levels of CCL21. Complete deficiency of CCL19 and CCL21 but not CCL19 alone was found to be associated with abnormal frequencies and localization of DC in naïve LN. Similarly, CCL19 was not required for DC migration from the skin, full DC maturation and efficient T-cell priming. Our findings suggest that CCL21 is the critical CCR7 ligand regulating DC homeostasis and function in vivo with CCL19 being redundant for these processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, different genetic tools are used to investigate both natural variation and speciation in the Ficedula flycatcher system: pied (Ficedula hypoleuca) and collared (F. albicollis) flycatchers. The molecular evolution of a gene involved in postnatal body growth, GH, has shown high degree of conservation at the mature protein between birds and mammals, whereas the variation observed in its signal peptide seems to be adaptive in pied flycatcher (I & II). Speciation is the process by which reproductive barriers to gene flow evolve between populations, and understanding the mechanisms involved in pre- and post-zygotic isolation have been investigated in Ficedula flycatchers. The Z chromosome have been suggested to be the hotspot for genes involved in speciation, thus sequencing of 13 Z-linked coding genes from the two species in allopatry and sympatry have been conducted (III). Surprisingly, the majority of Z-linked genes seemed to be highly conserved, suggesting instead a potential involvement of regulatory regions. Previous studies have shown that genes involved in hybrid fitness, female preferences and male plumage colouration are sex-linked. Hence, three pigmentation genes have been investigated: MC1R, AGRP, and TYRP1. Of these three genes, TYRP1 was identified as a strong candidate to be associated with black-brown plumage variation in sympatric populations, and hence is a strong candidate for a gene contributing to pre-zygotic isolation (IV). In sympatric areas, where pied and collared flycatchers have overlapping breeding areas, hybridization sometimes occurs leading to the production of unfit hybrids. By using a proteomic approach a novel expression pattern in hybrids was revealed compared to the parental species (V) and differentially expressed proteins subsequently identified by sequence similarity (VI). In conclusion, the Z chromosome appears to play an important role in flycatcher speciation, but probably not at the coding level. In addition the novel expression patterns might give new insights into the maladaptive hybrids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interleukin-6 cytokines, acting via gp130 receptor pathways, play a pivotal role in the reduction of cardiac injury induced by mechanical stress or ischemia and in promoting subsequent adaptive remodeling of the heart. We have now identified the small proline-rich repeat proteins (SPRR) 1A and 2A as downstream targets of gp130 signaling that are strongly induced in cardiomyocytes responding to biomechanical/ischemic stress. Upregulation of SPRR1A and 2A was markedly reduced in the gp130 cardiomyocyte-restricted knockout mice. In cardiomyocytes, MEK1/2 inhibitors prevented SPRR1A upregulation by gp130 cytokines. Furthermore, binding of NF-IL6 (C/EBPbeta) and c-Jun to the SPRR1A promoter was observed after CT-1 stimulation. Histological analysis revealed that SPRR1A induction after mechanical stress of pressure overload was restricted to myocytes surrounding piecemeal necrotic lesions. A similar expression pattern was found in postinfarcted rat hearts. Both in vitro and in vivo ectopic overexpression of SPRR1A protected cardiomyocytes against ischemic injury. Thus, this study identifies SPRR1A as a novel stress-inducible downstream mediator of gp130 cytokines in cardiomyocytes and documents its cardioprotective effect against ischemic stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Our purpose was development and assessment of a BRAF-mutant gene expression signature for colon cancer (CC) and the study of its prognostic implications. Materials and METHODS A set of 668 stage II and III CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract Cancers) clinical trial were used to assess differential gene expression between c.1799T>A (p.V600E) BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene expression-based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was validated in independent data sets, and survival rates were compared between classifier positive and negative tumors. Results A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant patients. Thus they form a distinct prognostic subgroup within their mutation class. CONCLUSION A characteristic pattern of gene expression is associated with and accurately predicts BRAF mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and double wild-type patients with similarly poor prognosis. This suggests a common biology between these tumors and provides a novel classification tool for cancers, adding prognostic and biologic information that is not captured by the mutation status alone. These results may guide therapeutic strategies for this patient segment and may help in population stratification for clinical trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants have the ability to use the composition of incident light as a cue to adapt development and growth to their environment. Arabidopsis thaliana as well as many crops are best adapted to sunny habitats. When subjected to shade, these plants exhibit a variety of physiological responses collectively called shade avoidance syndrome (SAS). It includes increased growth of hypocotyl and petioles, decreased growth rate of cotyledons and reduced branching and crop yield. These responses are mainly mediated by phytochrome photoreceptors, which exist either in an active, far-red light (FR) absorbing or an inactive, red light (R) absorbing isoform. In direct sunlight, the R to FR light (R/FR) ratio is high and converts the phytochromes into their physiologically active state. The phytochromes interact with downstream transcription factors such as PHYTOCHROME INTERACTING FACTOR (PIF), which are subsequently degraded. Light filtered through a canopy is strongly depleted in R, which result in a low R/FR ratio and renders the phytochromes inactive. Protein levels of downstream transcription factors are stabilized, which initiates the expression of shade-induced genes such as HFR1, PIL1 or ATHB-2. In my thesis, I investigated transcriptional responses mediated by the SAS in whole Arabidopsis seedlings. Using microarray and chromatin immunoprecipitation data, we identified genome-wide PIF4 and PIF5 dependent shade regulated gene as well as putative direct target genes of PIF5. This revealed evidence for a direct regulatory link between phytochrome signaling and the growth promoting phytohormone auxin (IAA) at the level of biosynthesis, transport and signaling. Subsequently, it was shown, that free-IAA levels are upregulated in response to shade. It is assumed that shade-induced auxin production takes predominantly place in cotyledons of seedlings. This implies, that IAA is subsequently transported basipetally to the hypocotyl and enhances elongation growth. The importance of auxin transport for growth responses has been established by chemical and genetic approaches. To gain a better understanding of spatio-temporal transcriptional regulation of shade-induce auxin, I generated in a second project, an organ specific high throughput data focusing on cotyledon and hypocotyl of young Arabidopsis seedlings. Interestingly, both organs show an opposite growth regulation by shade. I first investigated the spatio-transcriptional regulation of auxin re- sponsive gene, in order to determine how broad gene expression pattern can be explained by the hypothesized movement of auxin from cotyledons to hypocotyls in shade. The analysis suggests, that several genes are indeed regulated according to our prediction and others are regulated in a more complex manner. In addition, analysis of gene families of auxin biosynthetic and transport components, lead to the identification of essential family members for shade-induced growth re- sponses, which were subsequently experimentally confirmed. Finally, the analysis of expression pattern identified several candidate genes, which possibly explain aspects of the opposite growth response of the different organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer is generally a slowly developing disease. However, some cancers develop into an aggressive, metastasic and consequently life-threatening state. The mechanisms of prostate cancer spread are still mainly unidentified but hormones and growth factors are known to been involved. The forming of new blood vessels i.e. angiogenesis is crucial for tumor growth. Blood vessels and lymphatic vessels are also prominent routes for metastasis. Both angiogenic and lymphangiogenic factors are overexpressed in prostate cancer. We established an in vivo model to study the factors effecting human prostate cancer growth and metastasis. Tumors were produced by the orthotopic inoculation of PC-3 prostate cancer cells into the prostates of immunodeficient mice. Like human prostate tumors, these tumors metastasized to prostate-draining lymph nodes. Treatment of the mice with the bisphosphonate alendronate known to decrease prostate cancer cell invasion in vitro inhibited metastasis and decreased tumor growth. Decreased tumor growth was associated with decreased angiogenesis and increased apoptosis of tumor cells. To elucidate the role of angiogenesis in prostate cancer progression, we studied the growth of orthotopic PC-3 tumors overexpressing fibroblast growth factor b (FGF8b) known to be expressed in human prostate cancer. FGF8b increased tumor growth and angiogenesis, which were both associated with a characteristic gene expression pattern. To study the role of lymphangiogenesis, we produced orthotopic PC-3 tumors overexpressing vascular endothelial growth factor C (VEGF-C). Blocking of VEGF-C receptor (VEGFR3) completely inhibited lymph node metastasis whereas overexpression of VEGF-C increased tumor growth and angiogenesis. VEGF-C also increased lung metastases but, surprisingly, decreased spread to lymph nodes. This suggests that the expanded vascular network was primarily used as a route for tumor spreading. Finally, the functionality of the capillary network in subcutaneous FGF8b-overexpressing PC-3 tumors was compared to that of tumors overexpressing VEGF. Both tumors showed angiogenic morphology and grew faster than control tumors. However, FGF8b tumors were hypoxic and their perfusion and oxygenation was poor compared with VEGF tumors. This suggests that the growth advantage of FGF8b tumors is more likely due to stimulated proliferation than effective angiogenesis. In conclusion, these results show that orthotopic prostate tumors provide a useful model to explore the mechanisms of prostate cancer growth and metastasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulation of cell growth, death, and polarization by ERBB4 ErbB4 is a member of the epidermal growth factor receptor (EGFR, ErbB) family. The other members are EGFR, ErbB2 and ErbB3. ErbB receptors are important regulators for example in cardiovascular, neural and breast development but control key cellular functions also in many adult tissues. Abnormal ErbB signaling has been shown to be involved in various illnesses such as cancers and heart diseases. Among the ErbBs, ErbB4 has been shown to have unique signaling characteristics. ErbB4 exists in four alternatively spliced isoforms that are expressed in a tissue-specific manner. Two of the isoforms can be cleaved by membrane proteases, resulting in release of soluble intracellular domains (ICD). Once released into the cytosol, the ICD is capable of translocating into the nucleus and participating in regulation of transcription. The functional differences and the tissue-specific expression patterns suggest isoformspecific roles for ErbB4 isoforms. However, the abilities of ErbB4 isoforms to differently regulate cellular functions were discovered only recently and are not well understood. This study aimed to determine the expression patterns of ErbB4 in normal and diseased tissue, and to define whether the cleavable and non-cleavable isoforms could regulate different target genes and therefore, cellular functions. In this study, a comprehensive ErbB4 expression pattern in several normal tissues, various cancers and non-neoplastic diseases was determined. In addition, the data demonstrated that the cleavable and non-cleavable ErbB4 isoforms could regulate different cellular functions and target genes. Finally, this study defined the cellular responses regulated by ErbB4 during kidney development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF). HIF governs the expression of over a hundred hypoxia-inducible genes that regulate a number of cellular functions such as angiogenesis, glucose metabolism and cell migration. Therefore the activity of HIF must be tightly governed. HIF is regulated by a family of prolyl hydroxylase enzymes, PHDs, which mark HIF for destruction in normoxia. Under hypoxic conditions PHDs lose much of their enzymatic activity as they need molecular oxygen as a cofactor. Out of the three PHDs (PHD1, 2 and 3) PHD2 has been considered to be the main HIF-1 regulator in normoxic conditions. PHD3 on the other hand shows the most robust induction in response to oxygen deprivation and it has been implied as the main HIF-1 regulator under prolonged hypoxia. SQSTM1/p62 (p62) is an adaptor protein that functions through its binding motifs to bring together proteins in order to regulate signal transduction. In non-stressed situations p62 levels are kept low but its expression has been reported to be upregulated in many cancers. It has a definitive role as an autophagy receptor and as such it serves a key function in cancer cell survival decisions. In my thesis work I evaluated the significance of PHD3 in cancer cell and tumour biology. My results revealed that PHD3 has a dual role in cancer cell fate. First, I demonstrated that PHD3 forms subcellular protein aggregates in oxygenated carcinoma cells and that this aggregation promotes apoptosis induction in a subset of cancer cells. In these aggregates an adaptor protein SQSTM1/p62 interacts with PHD3 and in so doing regulates PHD3 expression. SQSTM1/p62 expression is needed to keep PHD3 levels low in normoxic conditions. Its levels rapidly decrease in response to hypoxia allowing PHD3 protein levels to be upregulated and the protein to be diffusely expressed throughout the cell. The interaction between PHD3 and SQSTM1/p62 limits the ability of PHD3 to function on its hydroxylation target protein HIF-1alpha. Second, the results indicate that when PHD3 is upregulated under hypoxia it protects cancer cells by allowing cell cycle to proceed from G1 to S-phase. My data demonstrates that PHD3 may either cause cell death or protect the cells depending on its expression pattern and the oxygen availability of tumours.