969 resultados para Evoked Potentials, Visual
Resumo:
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.
Resumo:
Performance-based studies on the psychological nature of linguistic competence can conceal significant differences in the brain processes that underlie native versus nonnative knowledge of language. Here we report results from the brain activity of very proficient early bilinguals making a lexical decision task that illustrates this point. Two groups of SpanishCatalan early bilinguals (Spanish-dominant and Catalan-dominant) were asked to decide whether a given form was a Catalan word or not. The nonwords were based on real words, with one vowel changed. In the experimental stimuli, the vowel change involved a Catalan-specific contrast that previous research had shown to be difficult for Spanish natives to perceive. In the control stimuli, the vowel switch involved contrasts common to Spanish and Catalan. The results indicated that the groups of bilinguals did not differ in their behavioral and event-related brain potential measurements for the control stimuli; both groups made very few errors and showed a larger N400 component for control nonwords than for control words. However, significant differences were observed for the experimental stimuli across groups: Specifically, Spanish-dominant bilinguals showed great difficulty in rejecting experimental nonwords. Indeed, these participants not only showed very high error rates for these stimuli, but also did not show an error-related negativity effect in their erroneous nonword decisions. However, both groups of bilinguals showed a larger correctrelated negativity when making correct decisions about the experimental nonwords. The results suggest that although some aspects of a second language system may show a remarkable lack of plasticity (like the acquisition of some foreign contrasts), first-language representations seem to be more dynamic in their capacity of adapting and incorporating new information. &
Resumo:
Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.
Resumo:
The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN) appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n = 83) normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.
Resumo:
¿Cómo responde el cerebro de una persona con ansiedad a las matemáticas? Nuestro estudio muestra que los estudiantes con mucha ansiedad hacia las matemáticas presentan un componente llamado negatividad asociada al error (NAE) de mayor tamaño que aquellos con poca ansiedad. Esta diferencia emerge en errores en tareas numéricas, lo que sugiere que las personas con alta ansiedad son hipersensibles a la comisión de estos errores. Este hallazgo aporta nuevo conocimiento sobre las bases cerebrales de la ansiedad hacia las matemáticas y sugiere que esta hipersensibilidad al error numérico podría ser un factor determinante tanto en el origen como en el mantenimiento de esta ansiedad.
Resumo:
The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean), 0.39 (SD - standard deviation) for the (C)APD group and 1.18 µV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 µV (mean), 0.31 (SD) for the (C)APD group and 1.00 µV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 µV (mean), 0.82 (SD)] and C3-A2 [1.24 µV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.
Resumo:
There is much evidence to support an age-related decline in source memory ability. However, the underlying mechanisms responsible for this decline are not well understood. The current study was carried out to determine the electrophysiological correlates of source memory discrimination in younger and older adults. Event-related potentials (ERPs) and continuous electrocardiographic (ECG) data were collected from younger (M= 21 years) and older (M= 71 years) adults during a source memory task. Older adults were more likely to make source memory errors for recently repeated, non-target words than were younger adults. Moreover, their ERP records for correct trials showed an increased amplitude in the late positive (LP) component (400-800 msec) for the most recently presented, non-target stimuli relative to the LP noted for target items. Younger adults showed an opposite pattern, with a large LP component for target items, and a much smaller LP component for the recently repeated non-target items. Computation of parasympathetic activity in the vagus nerve was performed on the ECG data (Porges, 1985). The resulting measure, vagal tone, was used as an index of physiological responsivity. The vagal tone index of physiological responsivity was negatively related to the LP amplitude for the most recently repeated, non-target words in both groups, after accounting for age effects. The ERP data support the hypothesis that the tendency to make source memory errors on the part of older adults is related to the ability to selectively control attentional processes during task performance. Furthermore, the relationship between vagal tone and ERP reactivity suggests that there is a physiological basis to the heightened reactivity measured in the LP response to recently repeated non-target items such that, under decreased physiological resources, there is an impairment in the ability to selectively inhibit bottom-up, stimulus based properties in favour of task-related goals in older adults. The inconsistency of these results with other explanatory models of source memory deficits is discussed. It is concluded that the data are consistent with a physiological reactivity model requiring inhibition of reactivity to irrelevant, but perceptually-fluent, stimuli.
Resumo:
The relationship between the child's cogni tive development and neurological maturation has been of theoretical interest for many year s. Due to diff iculties such as the lack of sophisticated techniques for measur ing neurolog ical changes and a paucity of normative data, few studies exist that have attempted to correlate the two factors. Recent theory on intellectual development has proposed that neurological maturation may be a factor in the increase of short-term memory storage space. Improved technology has allowed reliable recordings of neurolog ical maturation.. In an attempt to correlate cogni tive development and neurological maturation, this study tested 3-and II-year old children. Fine motor and gross motor short-term memory tests were used to index cogni tive development. Somatosensory evoked potentials elici ted by median nerve stimulation were used to measure the time required for the sensation to pass along the nerve to specific points on the somatosensory pathway. Times were recorded for N14, N20, and P22 interpeak latencies. Maturation of the central nervous system (brain and spinal cord) and the peripheral nervous system (outside the brain and spinal cord) was indi~ated by the recorded times. Signif icant developmental di fferences occurred between 3-and ll-year-olds in memory levels, per ipheral conduction velocity and central conduction times. Linear regression analyses showed that as age increased, memory levels increased and central conduction times decreased. Between the ll-year-old groups, there were no significant differences in central or peripheral nervous system maturation between subjects who achieved a 12 plus score on the digit span test of the WISC-R and those who scored 7 or lower on the same test. Levels achieved on the experimental gross and fine motor short-term memory tests differed significantly within the ll-year-old group.
Resumo:
Objectlve:--This study examined the intraclass reliability· of different measures of the
excitability of the Hoffmann reflex, derived from stimulus-response curves. The slope of the
regression line of the H-reflex stimulus-response curve advocated by Funase et al. (1994) was
also compared to the peak of the first derivative of the H-reflex stimulus-response curve
(dHIdVmax), a new measure introduced in this investigation. A secondary purpose was to explore
the possibility of mood as a covariate when measuring excitability of the H-reflex arc.
Methods: The H-reflex amplitude at a stimulus intensity corresponding to 5% of the
maximum M-wave (Mmax) is an established measure that was used as an additional basis of
comparison. The H-reflex was elicited in the soleus for 24 subjects (12 males and 12 females)
on five separate days. Vibration was applied to the Achilles tendon prior to stimulation to test
the sensitivity of the measures on test day four. The means of five evoked potentials at each
gradually increasing intensity, from below H-reflex threshold to above Mmax, were used to create
both the H-reflex and M-wave stimulus response curves for each subject across test days. The
mood of the subjects was assessed using the Subjective Exercise Experience Scale (SEES) prior
to the stimulation protocol each day.
Results: There was a modest decrease in all H-reflex measures from the first to third test day,
but it was non-significant (P's>0.05). All measures of the H-reflex exhibited a profound
reduction following vibration on test day four, and then returned to baseline levels on test day
five (P's<0.05). The intraclass correlation coefficient (ICC) for H-reflex amplitude at 5% of
Mmax was 0.85. The ICC for the slope of the regression line was 0.79 while it was 0.89 for
dH/dVmax. Maximum M-wave amplitude had an ICC of 0.96 attesting to careful methodological
controls. The SEES subscales of fatigue and psychological well-being remained unchanged
IV
across the five days. The psychological distress subscale (P
Resumo:
Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.
Resumo:
This thesis was conducted in order to investigate two issues: (1) how sensitive event related potentials (ERPs), and more specifically the medial frontal negativity and the P3 components, are to the valence and magnitude of reward-related stimuli, and (2) whether individual differences have an effect on the sensitivity of these ERP components to these characteristics. This was investigated using two reward-related paradigms. In the "pure gambling task" participants were asked to choose between two cards, each containing varying dollar amounts (large or small). The outcome of the choice (i.e., win or loss) was revealed after the choice was made. Additionally, participants were shown whether the non-chosen card would have been a win or a loss. In the "simple response task", participants were presented with five cues (large win, large loss, small win, small loss or zero) that labelled the trial as either a potential win, a potential loss or no change. Following the cue, a target appeared on the screen and the participant's task was to press the response key while the target was still visible. A success led to a win (gain in money) or no loss (no change) depending on the cue. Thirty participants completed both tasks; afterwards they filled out a set of questionnaires measuring personality and other individual differences relating to risk-taking behaviour. The results of both tasks showed that ERP components can differentiate between the valence and magnitude of reward-related stimuli, although no single component was uniquely related to either of the characteristics as previous suggested in the literature. Additionally, the context of the stimulus presentation (e.g., the task structure, condition within the task) affected the relationships between the ERP components and stimulus characteristics.
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.
Resumo:
Des sons émotionnels furent présentés comme stimuli cibles lors d'une tâche auditive de type oddball. Les effets acoustiques furent départagés des effets émotionnels à l'aide d'une tâche contrôle similaire utilisant une version brouillée des sons originaux et dépourvue de propriétés émotionnelles. Les résultats du oddball émotionnel qui ont différé du oddball contrôle ont montré des effets de valence inversés dans les composantes électrophysiologiques P2 et P300; la valence négative ayant une amplitude plus grande dans la fenêtre de 130-270ms mais moins intense autour de 290-460ms, lorsque comparée aux valences positives et neutres. Les résultats P2 peuvent être interprétés comme une mobilisation attentionnelle précoce privilégiant les stimuli potentiellement dangereux, tandis que les résultats de la P300 pourrait indiquer une évaluation moins détaillée de ces stimuli.