986 resultados para Evaluate image retention
Resumo:
Landscape unit discrimination for pedological surveys by orbital spectral response. The objective of tins study was compare two soil survey methods. The first was performed by methods traditionally used to distinguish landscape units and soil class discrimination. The second was based on soil class distinction through orbital spectral response. In order to establish soil characteristics and their classification, soil samples were collected at two depths in a grid system, with a distance of 500 meters between points. With these samples, physical and chemical analyses were carried out. In the sampling points, the apparent reflectance of the soil, front the orbital image, was determined and, through cluster analysis landscape units were established. In order to evaluate the resemblance reliability between the landscape units established in each method, the Kappa index was used, the value set for the confusion matrix was 0.43, indicating high quality in the comparison, showing that the non-conventional method was as close as the one carried out by photointerpretation.
Resumo:
Imaging Spectroscopy (IS) is a promising tool for studying soil properties in large spatial domains. Going from point to image spectrometry is not only a journey from micro to macro scales, but also a long stage where problems such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the BRDF effect and more are often encountered. In this paper we provide an up-to-date overview of some of the case studies that have used IS technology for soil science applications. Besides a brief discussion on the advantages and disadvantages of IS for studying soils, the following cases are comprehensively discussed: soil degradation (salinity, erosion, and deposition), soil mapping and classification, soil genesis and formation, soil contamination, soil water content, and soil swelling. We review these case studies and suggest that the 15 data be provided to the end-users as real reflectance and not as raw data and with better signal-to-noise ratios than presently exist. This is because converting the raw data into reflectance is a complicated stage that requires experience, knowledge, and specific infrastructures not available to many users, whereas quantitative spectral models require good quality data. These limitations serve as a barrier that impedes potential end-users, inhibiting researchers from trying this technique for their needs. The paper ends with a general call to the soil science audience to extend the utilization of the IS technique, and it provides some ideas on how to propel this technology forward to enable its widespread adoption in order to achieve a breakthrough in the field of soil science and remote sensing. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Assortments of biophysical methods are used to the study the stratum corneum morphology and dynamic with the objective to elucidate the correlation between its structure and functions. Among these methods, there are: X-ray diffraction, electron paramagnetic resonance, differential scanning calorimetry, Raman spectroscopy with Fourrier transform, infrared spectroscopy and photoacustic spectroscopy. In this manuscript, methods are presented and discussed in relation to the use indication, interpretation of results and advantages and limitations to the stratum corneum analysis.
Resumo:
When a coherent light beam is scattered from a colloidal medium, in the observation plane, appears a random grainy image known as speckle pattern. The time evolution of this interference image carries information about the ensemble-averaged dynamics of the scatterer particles. The aim of this work was to evaluate the use of dynamic speckles as an alternative tool to monitoring frozen foams formulated with glucose and fructose syrups. Ice creams, after preparation and packing, were stored at 18 degrees C. Changes in properties of products were analyzed by speckle phenomena at three room temperatures (20 degrees C, 25 degrees C and 30 degrees C), minute by minute, during 50 min. Two moments were identified in which samples activity achieved significant levels. These instants were associated, respectively, to ice crystals melting and to air bubbles dissipation into the food matrix causing motion of diverse structures. As expected, ice crystals melting was first in formulations containing fructose syrup, but for same samples, air losses were delayed. Speckle methodology was satisfactory to observe temporal evolution of transient process, opening goods prospects to application, still incoming, in foodstuffs researches. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, flatbed scanning, instrumental texture analysis, spectrophotometric color determination (L*, a*, b*), moisture and specific volume measurements were used to evaluate the effects of the addition of rye flour or rye flakes, yeast and boiling water in different amounts in sponge-dough rye bread production. The treatments changed significantly (P < 0.05) the crumb cell area (mm(2)), cell diameter (mm), cell perimeter (mm), texture parameters and light reflectance (L*, a*, b*). Scalding process could be used to produce new textures and color of baked products.
Resumo:
Green tea (Camellia sinensis) and Ginkgo biloba extracts in cosmetic formulations have been suggested to protect the skin against UV-induced damage and skin ageing. Thus, it is very important to assess the human skin penetration of their major flavonoids to verify if they penetrate and remain in the skin to exert their proposed effects. The aim of this study was to evaluate the human skin penetration of epigallocatechin-3-gallate (EGCG) and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations. This study was conducted with fresh dermatomed human Caucasian skin from abdominal surgery mounted on static Franz diffusion cells. Skin samples were mounted between two diffusion half-cells and 10 mg/cm(2) of formulations supplemented with 6% of green tea or G. biloba extract were applied on the skin surface. The receptor fluid was removed after 6 and 24 h and analyzed by high-performance liquid chromatography for the quantification of the flavonoids. The stratum corneum was removed by tape stripping and immersed in methanol and the epidermis was mechanically separated from the dermis and triturated in methanol to extract EGCG and quercetin. The results showed that the flavonoids under study penetrated into the skin, without reaching the receptor fluid. The majority of EGCG was quantified in the stratum corneum (0.87 mu g/cm(2)), which was statistically higher than the EGCG concentrations found in viable epidermis (0.54 mu g/cm(2)) and in the dermis (0.38 mu g/cm(2)). The majority of quercetin was quantified in the viable epidermis (0.23 mu g/cm(2)), which was statistically higher than the EGCG concentration found in the stratum corneum layer (0.17 mu g/cm(2)). Finally, it can be concluded that EGCG and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations presented good skin penetration and retention, which can favor their skin effects. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The aim of this work was to investigate the effects of drying parameters on the retention of the enzymatic activity and on the physical properties of spray-dried pineapple stem extract. A Box and Behnken experimental design was used to investigate the effects of the processing parameters on the product properties. The parameters studied were the inlet temperature of drying gas (Tgi), the feed flow rate of the pineapple extract relative to evaporative capacity of the system (Ws /Wmax), and the concentration of maltodextrin added to the extract (MD). Significant effects of the processing parameters on the retention of the proteolytic activity of the powdered extract were observed. High processing temperatures lead to a product with a smaller moisture content, particle size, and lower agglomerating tendency. A product with insignificant losses of the proteolytic activity ( 10%) and low moisture content (less than 6.5%) is obtained at selected conditions.
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
This paper reports a simple and reliable HPLC method to evaluate the influence of two currently available photostabilizers on cosmetic formulations containing combined UV-filters and vitamins A and E. Vitamins and UV-filters, widely encountered in products of daily use have to be routinely evaluated since photoinstability can lead to reductions in their efficacy and safety. UV-irradiated formulation samples were submitted to a procedure that included a reliable, precise and specific HPLC method employing a C18 column and detection at 325 and 235 nm. Methanol, isopropanol and water were the mobile phases in gradient elution. The method precision was between 0.28 and 5.07. The photostabilizers studied [diethylhexyl 2,6-naphthalate (DEHN) and benzotriazolyl dodecyl p-cresol (BTDC)], influenced the stability of octyl methoxycinnamate (OMC) associated with vitamins A and E. BTDC was considered the best photostabilizer to vitamins and OMC when the UV-filters were combined with both vitamins A and E. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present work was to obtain an ophthalmic delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the treatment of ocular diseases. For this, an in situ forming gel comprised of the combination of a thermosetting polymer, poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO, poloxamer), with a mucoadhesive agent (chitosan) was developed. Different polymer ratios were evaluated by oscillatory rheology, texture and mucoadhesive profiles. Scintigraphy studies in humans were conduced to verify the retention time of the formulations developed. The results showed that chitosan improves the mechanical strength and texture properties of poloxamer formulations and also confers mucoadhesive properties in a concentration-dependent manner. After a 10-min instillation of the poloxamer/chitosan 16:1 formulation in human eyes, 50-60% of the gel was still in contact with the cornea surface, which represents a fourfold increased retention in comparison with a conventional solution. Therefore, the developed formulation presented adequate mechanical and sensorial properties and remained in contact with the eye surface for a prolonged time. In conclusion, the in situ forming gel comprised of poloxamer/chitosan is a promising tool for the topical treatment of ocular diseases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This pilot project at Cotton Tree, Maroochydore, on two adjacent, linear parcels of land has one of the properties privately owned while the other is owned by the public housing authority. Both owners commissioned Lindsay and Kerry Clare to design housing for their separate needs which enabled the two projects to be governed by a single planning and design strategy. This entailed the realignment of the dividing boundary to form two approximately square blocks which made possible the retention of an important stand of mature paperbark trees and gave each block a more useful street frontage. The scheme provides seven two-bedroom units and one single-bedroom unit as the private component, with six single-bedroom units, three two-bedroom units and two three-bedroom units forming the public housing. The dwellings are deployed as an interlaced mat of freestanding blocks, car courts, courtyard gardens, patios and decks. The key distinction between the public and private parts of the scheme is the pooling of the car parking spaces in the public housing to create a shared courtyard. The housing climbs to three storeys on its southern edge and falls to a single storey on the north-western corner. This enables all units and the principal private outdoor spaces to have a northern orientation. The interiors of both the public and private units are skilfully arranged to take full advantage of views, light and breeze.
Resumo:
This pilot project at Cotton Tree, Maroochydore, on two adjacent, linear parcels of land has one of the properties privately owned while the other is owned by the public housing authority. Both owners commissioned Lindsay and Kerry Clare to design housing for their separate needs which enabled the two projects to be governed by a single planning and design strategy. This entailed the realignment of the dividing boundary to form two approximately square blocks which made possible the retention of an important stand of mature paperbark trees and gave each block a more useful street frontage. The scheme provides seven two-bedroom units and one single-bedroom unit as the private component, with six single-bedroom units, three two-bedroom units and two three-bedroom units forming the public housing. The dwellings are deployed as an interlaced mat of freestanding blocks, car courts, courtyard gardens, patios and decks. The key distinction between the public and private parts of the scheme is the pooling of the car parking spaces in the public housing to create a shared courtyard. The housing climbs to three storeys on its southern edge and falls to a single storey on the north-western corner. This enables all units and the principal private outdoor spaces to have a northern orientation. The interiors of both the public and private units are skilfully arranged to take full advantage of views, light and breeze.