624 resultados para Eutrophication.
Resumo:
The inventories of nutrients in the surface water and large phytoplankton( > 69 pm) were analyzed from the data set of JERS ecological database about a typical coastal waters, the Jiaozhou Bay, China, from 1960s for N, P and from 1980s; for Si. By examining long-term changes of nutrient concentration, calculating stoichiometric balance, and comparing diatom composition, Si limitation of diatom production was found to be more possible. The possibility of Si limitation was from 37% in 1980s to 50% in 1990s. Jiaozhou Bay ecosystem is becoming serious eutrophication, with notable increase of NO2-N, NO3-N and NH4-N from 0.1417 mumol/L, 0.5414 mumol/L, 1.7222 mumol/L in 1960s to 0.9551 mumol/L, 3.001 mumol/L, 8.0359 mumol/L in late 1990s respectively and prominent decrease of Si from 4.2614 mumol/L in 1980s to 1.5861 mumol/L in late 1990s; the nutrient structure is controlled by nitrogen; the main limiting nutrient is probably silicon; because of the Si limitation the phytoplankton community structure has changed drastically.
Resumo:
Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 103 tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1) 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.
Resumo:
Sediment geochemical technique was employed to assess how the sediment records reflect the environmental changes of Jiaozhou Bay, a semi-enclosed bay adjacent to Qingdao, China. In the past hundred years, Jiaozhou Bay has been greatly impacted by human interventions. A dated core sediment by Pb-210 chronology was analyzed for trace metals including Li, Cd, Cr, Pb, Cu, Ni, Co, Zn together with C, N, P and BSi. Based on the research, the development of Jiaozhou Bay environment in the past hundred years can be divided into three stages: (1) before the 1980s characterized by relatively low sedimentation rate, weak heavy metal pollution and scarce eutrophication; (2) from the 1980s to 2000, accelerating in the 1990s, during which high sedimentation rates, polluted by heavy metals and the frequent occurrence of red tide; (3) after 2000, the period of the improvement of environment, the whole system has been meliorated including the heavy metal pollution and hypernutrification. (c) 2006 Elsevier Ltd. All rights reserved.
Response of the diatom flora in Jiaozhou Bay, China to environmental changes during the last century
Resumo:
The diatom flora in a 164 cm long sediment core obtained from Jiaozhou Bay (Yellow Sea, China) was analyzed in order to trace the response of diatoms to environmental changes over the past 100 years. The sediment core was dated by Pb-210 and Cs-137 and represented approximately 100 years (1899-2001 A.D.). The flora was mainly composed of centric diatoms (59-96%). The concentration of diatoms declined sharply above 30 cm (after similar to 1981 A.D.), while the dominant species changed from Thalassiosira anguste-lineatus, Thalassiosira eccentria, Coscinodiscus excentricus, Coscinodiscus concinnus and Diploneis gorjanovici to Cyclotella stylorum and Paralia sulcata. Species richness decreased slightly, and the cell abundance of warm-water species increased. We argue that these floral changes were probably caused by climate change in combination with eutrophication resulting from aquaculture and sewage discharge. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Both nitrate (NO (3) (-) ) and soluble reactive phosphate (PO (4) (3-) ) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity > 30, NO (3) (-) concentration has shown an obvious increase, PO (4) (3-) has not changed greatly and dissolved reactive silica (SiO (3) (2-) ) has deceased dramatically. An examination of the elemental ratio of NO (3) (-) to PO (4) (3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO (4) (3-) in surface seawater, with salinity > 22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO (3) (2-) :PO (4) (3-) ratio has undergone a reverse trend in this area. Based on the changes of SiO (3) (2-) :PO (4) (3-) and DIN:PO (4) (3-) ratios, we can conclude that an overall historical change of SiO (3) (2-) :DIN ratio has decreased in this area from the 1950-1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.
Resumo:
Fed fish farms produce large amounts of wastes, including dissolved inorganic nitrogen and phosphorus. In China, fish mariculture in coastal waters has been increasing since the last decade. However, there is no macroalgae commercially cultivated in north China in warm seasons. To exploit fish-farm nutrients as a resource input, and at the same time to reduce the risk of eutrophication, the high-temperature adapted red alga Gracilaria lemaneiformis (Bory) Dawson from south China was co-cultured with the fish Sebastodes fuscescens in north China in warm seasons. Growth and nutrient removal from fish culture water were investigated in laboratory conditions in order to evaluate the nutrient bioremediation capability of G. lemaneiformis. Feasibility of integrating the seaweed cultivation with the fed fish-cage aquaculture in coastal waters of north China was also investigated in field conditions. Laboratory seaweed/fish co-culture experiments showed that the seaweed was an efficient nutrient pump and could remove most nutrients from the system. Field cultivation trials showed that G. lemaneiformis grew very well in fish farming areas, at maximum growth rate of 11.03% day(-1). Mean C, N, and P contents in dry thalli cultured in Jiaozhou Bay were 28.9 +/- 1.1%, 4.17 +/- 0.11 % and 0.33 +/- 0.01 %, respectively. Mean N and P uptake rates of the thalli were estimated at 10.64 and 0.38 mu mol g(-1) dry weight h(-1), respectively. An extrapolation of the results showed that a 1-ha cultivation of the seaweed in coastal fish fanning waters would give an annual harvest of more than 70 t of fresh G. lemaneiformis, or 9 t dry materials; 2.5 t C would be produced, and simultaneously 0.22 t N and 0.03t P would be sequestered from the seawater by the seaweed. Results indicated that the seaweed is suitable as a good candidate for seaweed/fish integrated mariculture for bioremediation and economic diversification. The integration can benefit economy and environment in a sustainable manner in warm seasons in coastal waters of north China. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m(-2), with daily C, N and P biodeposition rates of 3.06 x 10(-1), 3.86 x 10(-2) and 9.80 x 10(-3) g m(-2), respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic-benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic-pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In coastal ecosystems, suspension-cultured bivalve filter feeders may exert a strong impact on phytoplankton and other suspended particulate matter and induce strong pelagic-benthic coupling via intense filtering and biodeposition. We designed an in situ method to determine spatial variations in the filtering-biodeposition process by intensively suspension-cultured scallops Chlamys farreri in summer in a eutrophic bay (Sishili Bay, China), using cylindrical biodeposition traps directly suspended from longlines under ambient environmental conditions. Results showed that bivalve filtering-biodeposition could substantially enhance the deposition of total suspended material and the flux of C, N and P to the benthos, indicating that the suspended filter feeders could strongly enhance pelagic-benthic coupling and exert basin-scale impacts in the Sishili Bay ecosystem. The biodeposition rates of 1-yr-old scallops varied markedly among culture sites (33.8 to 133.0 mg dry material ind.(-1) d(-1)), and were positively correlated with seston concentrations. Mean C, N and P biodeposition rates were 4.00, 0.51, 0.11 mg ind.-1 d-1, respectively. The biodeposition rates of 2-yr-old scallops were almost double these values. Sedimentation rates at scallop culture sites averaged 2.46 times that at the reference site. Theoretically, the total water column of the bay could be filtered by the cultured scallops in 12 d, with daily seston removal amounting to 64%. This study indicated that filtering-biodeposition by suspension-cultured scallops could exert long-lasting top-down control on phytoplankton biomass and other suspended material in the Sishili Bay ecosystem. In coastal waters subject to anthropogenic N and P inputs, suspended bivalve aquaculture could be advantageous, not only economically, but also ecologically, by functioning as a biofilter and potentially mitigating eutrophication pressures. Compared with distribution-restricted wild bivalves, suspension-cultured bivalves in deeper coastal bays may be more efficient in processing seston on a basin scale.
Resumo:
To investigate the ecological effect of macroalgae on de-eutrophication and depuration of mariculture seawater, the variation of dissolved inorganic nitrogen (DIN) and phosphate (DIP), the amount of Vibrio anguillarum, and total heterotrophic bacteria in Ulva clathrata culture, as well as on the algal surface, were investigated by artificially adding nutrients and V. anguillarum strain 65 from February to April 2006. The results indicated that U. clathrata not only had strong DIN and DIP removal capacities, but also showed a significant inhibitory effect on V. anguillarum, although not reducing the total heterotrophic bacteria. Vibrio anguillarum 65 dropped from 5 similar to 8 x 10(7) cfu mL(-1) to 10 cfu mL(-1) (clone-forming units per mL) in 10 g L-1 of fresh U. clathrata culture within 2 days; i.e., almost all of the Vibrios were efficiently eradicated from the algal culture system. Our results also showed that the inhibitory effect of U. clathrata on V. anguillarum strain 65 was both DIN- and DIP-dependent. Addition of DIN and DIP could enhance the inhibitory effects of the algae on the Vibrio, but did not reduce the total heterotrophic bacteria. Further studies showed that the culture suspension in which U. clathrata was pre-cultured for 24 h also had an inhibitory effect on V. anguillarum strain 65. Some unknown chemical substances, either released from U. clathrata or produced by the alga associated microorganisms, inhibited the proliferation of V. anguillarum 65.
Resumo:
磷是水生生态系统初级生产力的主要限制因子,也是造成湖泊富营养化的关键营养元素。湖泊富营养化现已成为世界性的环境问题,它不但制约了湖泊资源的可利用性,而且直接影响着人类的健康生存与社会经济的可持续发展。沉积物内源磷的释放是决定湖泊水体营养水平、影响湖泊富营养化治理成效的重要因素。因此,研究沉积物中磷的组成形态、含量分布及迁移转化等对于全面了解湖泊生态系统中磷的生物地球化学循环,有效控制和管理湖泊富营养化具有重要的意义。然而目前对沉积物中的无机磷(Pi)及其生物可利用性进行了大量的研究,有机磷(Po)作为沉积物中的重要化学成分,它的地球化学特征及其对湖泊富营养化的作用却了解甚少。 长江中下游地区和云贵高原地区是我国淡水湖泊的主要分布区,也是我国湖泊富营养化最为严重的地区。本论文工作选取两地区具不同流域特征、水文状况、生态结构、污染程度的代表性湖泊(太湖梅梁湾、鼋头渚、贡湖、东太湖, 红枫湖, 百花湖和洱海)为研究对象,结合传统的化学连续提取手段和最新的液体磷核磁共振(31P NMR)波谱分析,研究了这些湖泊沉积物中Po的形态、组成以及剖面分布特征,揭示了Po对湖泊富营养化的重要作用;并运用高效体积排阻色谱法、分子荧光光谱法探讨了它们与沉积物中有机质的关系。主要研究结果如下: 1. 采用改进的土壤Po分级体系研究湖泊沉积物中Po的赋存形态,沉积物中Po的回收率可达94.3-101.1%,平均为98.5±2.2%,说明了该方法基本上包括了沉积物中全部Po。这是因为本方法对活性Po和腐殖质磷萃取的时间更长,提取更为完全;对富里酸磷和胡敏酸磷的区分更加明确;还特别增加了残渣态有机磷(Residual Po)的测定,使得Po的形态分析更为周密和准确。沉积物中Residual Po的含量占总Po的29.9-57.2%,进一步表明了此方法的可取性,这将为以后开展湖泊沉积物中Po的形态研究奠定了基础。 2. 湖泊沉积物中磷形态的不同分布特征可能与两地区不同的湖泊类型、有机质降解过程的差异以及各种磷形态之间的相互转化有关。Po形态在不同污染程度沉积物中的含量与分布也充分说明了沉积物是水体富营养化的主要内源,Po对湖泊富养化的作用不容忽视。 3.太湖梅梁湾、鼋头渚和贡湖沉积物不同提取液中有机质的分子量分布特征可能表明了其中有机质和Po组成的差异,而沉积物中有机C/N和C/P比值分析和三维荧光光谱特征的相似形可能反映了太湖(浅水湖泊)沉积物中有机质与磷的地球化学特性及其相互关系。 4. 31P NMR的测定结果显示,湖泊沉积物中磷主要由正磷酸盐(Ortho-P)、磷酸单酯(Monoester-P)与二酯(Diester-P)组成,焦磷酸盐(Pyro-P)和膦酸盐(Phosphonate)的含量非常低。Ortho-P在重富营养化和浅水湖泊沉积物中的相对含量高于富营养化、中富营养化和深水湖泊沉积物,Monoester-P的分布特征正好相反,表明了这些磷化合物在不同湖泊生态系统磷的循环中的差异。此外,Monoester-P中肌糖磷酸的大量存在,也同时证实了前面Po化学连续提取中高含量的Residual Po。 5. 梅梁湾和洱海沉积物中总磷(TP)、Pi、Ortho-P、Monoester-P、总有机碳(TOC)和总氮(TN)表现出不同的剖面分布特征,说明了有机质和磷在不同湖泊环境中的分解转化规律,可能解释了内源磷的释放对两湖富营养化的影响。此外,Diester-P中DNA-P的剖面变化和前人报道的沉积物中DNA的分布特征正好吻合,表明了DNA-P主要来源于沉积物中细菌和微生物的DNA。
Resumo:
Nitrogen is the most abundant element in atmosphere and fundamental component of proteins, nucleic acids and other essential molecules. In the past century the industrial use of nitrogen compounds has grown exponentially causing widespread pollution. Nitrogen pollution has wide-ranging impacts including contributions to global warming, acid rains and eutrophication. Reduction of nitrogen use in industry and agriculture coupled whit remediation treatments could represent a solution. To this purpose we isolated from environmental samples a nitrophile strain capable of removing nitrogen compounds efficiently from the medium. Through the molecular characterization, we identified the strain as a Rhodotorula glutinis that we called DSBCA06. We examined the main metabolic features of the strain, also to determine the best growing conditions. At the same time, the ability of the strain to grow in presence of high nitrite concentrations was assayed, being a relevant feature poorly studied earlierfor other environmental yeasts. The ability of the strain to grow in presence of heavy metal cations was also tested, showing a noticeable tolerance. The cost of bioremediation treatments is often a problem. One of the way to obviate this is to produce valuable secondary metabolites, capable of positively impact the cost of the processes. In this context the ability of the strain to produce carotenoids, natural molecules with antioxidant properties used for food production, cosmetic and pharmaceutical industry, has been evaluated. The strain Rhodotorula glutinis DSBCA06 showed interesting features suggesting its possible use in bioremediation or industrials process for production of secondary metabolites such as lipids and carotenoids.
Resumo:
Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.
Resumo:
Gemstone Team BREATHE (Bay Revitalization Efforts Against the Hypoxic Environment)
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.
Resumo:
This paper examines long term changes in the plankton of the North Atlantic and northwest European shelf seas and discusses the forcing mechanisms behind some observed interannual, decadal and spatial patterns of variability with a focus on climate change. Evidence from the Continuous Plankton Records suggests that the plankton integrates hydrometeorological signals and may be used as a possible index of climate change. Changes evident in the plankton are likely to have important effects on the carrying capacity of fisheries and are of relvance to eutrophication issues and to the assessment of biodiversity. The scale of the changes seen over the past five decades emphasises the importance of maintaining existing, and establishing new, long term and wide scale monitoring programmes of the world's oceans in initiatives such as the Global Ocean Observing System (GOOS).