926 resultados para Environmental Sciences related to Agriculture and Land-use
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
The red-legged partridge is a small game species widely hunted in southern Spain. Its commercial use has important socioeconomic effects in rural areas where other agrarian uses are of marginal importance. The aims of the present work were to identify areas in Andalusia (southern Spain) where game yields for the red-legged partridge reach high values and to establish the environmental and land use factors that determine them. We analysed 32,134 annual hunting reports (HRs) produced by 6,049 game estates during the hunting seasons 1993/1994 to 2001/2002 to estimate the average hunting yields of red-legged partridge in each Andalusian municipality (n=771). We modelled the favourability for obtaining good hunting yields using stepwise logistic regression on a set of climatic, topographical, land use and vegetation variables that were available as digital coverages or tabular data applied to municipalities. Good hunting yields occur mainly in plain areas located in the Guadalquivir valley, at the bottom of Betic Range and in the Betic depressions. Favourable areas are related to highly mechanised, lowelevation areas mainly dedicated to intensive dry crops. The most favourable areas predicted by our model are mainly located in the Guadalquivir valley.
Resumo:
Declining biodiversity in agro-ecosystems, caused by intensification of production or expansion of monocultures, is associated with the emergence of agricultural pests. Understanding how land-use and management control crop-associated biodiversity is, therefore, one of the key steps towards the prediction and maintenance of natural pest-control. Here we report on relationships between land-use variables and arthropod community attributes (for example, species diversity, abundance and guild structure) across a diversification gradient in a rice-dominated landscape in the Mekong delta, Vietnam. We show that rice habitats contained the most diverse arthropod communities, compared with other uncultivated and cultivated land-use types. In addition, arthropod species density and Simpson's diversity in flower, vegetable and fruit habitats was positively related to rice cover in the local landscape. However, across the landscape as a whole, reduction in heterogeneity and the amount of uncultivated cover was associated, generally, with a loss of diversity. Furthermore, arthropod species density in tillering and flowering stages of rice was positively related to crop and vegetation richness, respectively, in the local landscape. Differential effects on feeding guilds were also observed in rice-associated communities with the proportional abundance of predators increasing and the proportional abundance of detritivores decreasing with increased landscape rice cover. Thus, we identify a range of rather complex, sometimes contradictory patterns concerning the impact of rice cover and landscape heterogeneity on arthropod community attributes. Importantly, we conclude that that land-use change associated with expansion of monoculture rice need not automatically impact diversity and functioning of the arthropod community.
Resumo:
The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.
Resumo:
This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
The supply side of the food security engine is the way we farm. The current engine of conventional tillage farming is faltering and needs to be replaced. This presentation will address supply side issues of agriculture to meet future agricultural demands for food and industry using the alternate no-till Conservation Agriculture (CA) paradigm (involving no-till farming with mulch soil cover and diversified cropping) that is able to raise productivity sustainably and efficiently, reduce inputs, regenerate degraded land, minimise soil erosion, and harness the flow of ecosystem services. CA is an ecosystems approach to farming capable of enhancing not only the economic and environmental performance of crop production and land management, but also promotes a mindset change for producing ‘more from less’, the key attitude towards sustainable production intensification. CA is now spreading globally in all continents at an annual rate of 10 Mha and covers some 157 Mha of cropland. Today global agriculture produces enough food to feed three times the current population of 7.21 billion. In 1976, when the world population was 4.15 billion, world food production far exceeded the amount necessary to feed that population. However, our urban and industrialised lifestyle leads to wastage of food of some 30%-40%, as well as waste of enormous amount of energy and protein while transforming crop-based food into animal-derived food; we have a higher proportion of people than ever before who are obese; we continue to degrade our ecosystems including much of our agricultural land of which some 400 Mha is reported to be abandoned due to severe soil and land degradation; and yields of staple cereals appear to have stagnated. These are signs of unsustainability at the structural level in the society, and it is at the structural level, for both supply side and demand side, that we need transformed mind sets about production, consumption and distribution. CA not only provides the possibility of increased crop yields for the low input smallholder farmer, it also provides a pro-poor rural and agricultural development model to support agricultural intensification in an affordable manner. For the high output farmer, it offers greater efficiency (productivity) and profit, resilience and stewardship. For farming anywhere, it addresses the root causes of agricultural land degradation, sub-optimal ecological crop and land potentials or yield ceilings, and poor crop phenotypic expressions or yield gaps. As national economies expand and diversify, more people become integrated into the economy and are able to access food. However, for those whose livelihoods continue to depend on agriculture to feed themselves and the rest of the world population, the challenge is for agriculture to produce the needed food and raw material for industry with minimum harm to the environment and the society, and to produce it with maximum efficiency and resilience against abiotic and biotic stresses, including those arising from climate change. There is growing empirical and scientific evidence worldwide that the future global supplies of food and agricultural raw materials can be assured sustainably at much lower environmental and economic cost by shifting away from conventional tillage-based food and agriculture systems to no-till CA-based food and agriculture systems. To achieve this goal will require effective national and global policy and institutional support (including research and education).
Resumo:
Pressures on the Brazilian Amazon forest have been accentuated by agricultural activities practiced by families encouraged to settle in this region in the 1970s by the colonization program of the government. The aims of this study were to analyze the temporal and spatial evolution of land cover and land use (LCLU) in the lower Tapajós region, in the state of Pará. We contrast 11 watersheds that are generally representative of the colonization dynamics in the region. For this purpose, Landsat satellite images from three different years, 1986, 2001, and 2009, were analyzed with Geographic Information Systems. Individual images were subject to an unsupervised classification using the Maximum Likelihood Classification algorithm available on GRASS. The classes retained for the representation of LCLU in this study were: (1) slightly altered old-growth forest, (2) succession forest, (3) crop land and pasture, and (4) bare soil. The analysis and observation of general trends in eleven watersheds shows that LCLU is changing very rapidly. The average deforestation of old-growth forest in all the watersheds was estimated at more than 30% for the period of 1986 to 2009. The local-scale analysis of watersheds reveals the complexity of LCLU, notably in relation to large changes in the temporal and spatial evolution of watersheds. Proximity to the sprawling city of Itaituba is related to the highest rate of deforestation in two watersheds. The opening of roads such as the Transamazonian highway is associated to the second highest rate of deforestation in three watersheds.
Resumo:
Biological invasions and land-use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land-use is a key driver of alien species invasions, it is often assumed that land-use is constant in time. Here we combine historical and present day information, to evaluate whether land-use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present-day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present-day data on land-uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land-use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land-use changes predicted invasion dynamics better than models assuming constant land-use over the last 50 years. Scenarios of future land-use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land-use is not constant in time: land-use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land-use class may vary in time. An integration of land-use changes in studies of biological invasions can help to improve management strategies.
Resumo:
The assessment of the potential landscape impacts of the latest Common Agricultural Policy reforms constitutes a challenge for policy makers and it requires the development of models that can reliably project the likely spatial distribution of land uses. The aim of this study is to investigate the impact of 2003 CAP reforms to land uses and rural landscapes across England. For this purpose we modified an existing economic model of agriculture, the Land-Use Allocation Model (LUAM) to provide outputs at a scale appropriate for informing a semi-quantitative landscape assessment at the level of ‘Joint Character Areas’ (JCAs). Overall a decline in the cereal and oilseed production area is projected but intensive arable production will persist in specific locations (East of England, East Midlands and South East), having ongoing negative effects on the character of many JCAs. The impacts of de-coupling will be far more profound on the livestock sector; extensification of production will occur in traditional mixed farming regions (e.g. the South West), a partial displacement of cattle by sheep in the upland regions and an increase in the sheep numbers is expected in the lowlands (South East, Eastern and East Midlands). This extensification process will affect positively those JCAs of mixed farming conditions, but it will have negative impacts on the JCAs of historically low intensity farming (e.g. the uplands of north-west) because they will suffer from under-management and land idling. Our analysis shows that the territorialisation between intensively and extensively agricultural landscapes will continue.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
Roads facilitate access by deforestation agents, being relevant in studies approaching conservationist matters in rainforests. It is important to understand the relationship between road distribution, relief, land use, and forest coverage in order to evaluate where forests are more vulnerable. This study aimed at: 1) understanding the relationship between relief and density and road connectivity in three moments in time; and 2) evaluating the relationship between distance from roads and forest coverage, farmlands and rural and urban facilities in a fragmented Atlantic Forest landscape in three moments in time. Maps of roads, altitude, and land use and coverage were used. Chi-square tests showed that: 1) density and road connectivity did not present significant relationship with the relief; and 2) forest areas occupy areas distant from the roads, while farmlands and rural and urban facilities occupy areas nearer the roads. Roads and land use, regardless of relief, influence forest coverage distribution. Thus, we suggest that roads are taken into account in conservationist strategies and environmental planning.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)