847 resultados para Engineering, Computer|Engineering, Electronics and Electrical|Computer Science
Resumo:
This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
High-quality (Pb, La)TiO3 ferroelectric thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. The X-ray diffraction patterns show that the films are polycrystalline in nature. This method allows for low temperature (500 degrees C) synthesis, a high quality microstructure and superior dielectric properties. The effects on the microstructure and electrical properties were studied by changing the La content. The films annealed at 500 degreesC have a single perovskite phase with only a tetragonal or pseudocubic structure. As the La content is increased, the dielectric constant of PLT thin films increases from 570 up to 1138 at room temperature. The C-V and P-E characteristics of perovskite thin films prepared at a low temperature show normal ferroelectric behavior, representing the ferroelectric switching property. The remanent polarization and coercive field of the films deposited decreased due to the transformation from the ferroelectric to the paraelectric phase with an increased La content. (C) 2001 Kluwer Academic Publishers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450°C on glass substrates from solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Includes Bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. It was investigated the barium (II) modification at 0.0, 0.2, 0.4 and 0.6 mol% in substitution to the lead (II) cation in A site of perovskite structure. The powder samples were characterized by XRD and the diffraction patterns were used to Rietveld refinement. The percentages of tetragonal and rhombohedral phases and a systematic study of the effect of barium (II) on the morphology and the dielectric properties of PZT were carried out. The results showed that the tetragonal phase is favored and the ceramic density is improved with the barium (II) insertion. The Curie temperature (Tc) is increased besides the slight reduction of dielectric constant (Kc).
Resumo:
A series of four different powders ceria doped Ce1-xErxO2-delta (0.05 <= x <= 0.20) were synthesized by applying self-propagating reaction at room temperature (SPRT method). SPRT procedure is based on the self-propagating room temperature reaction between metal nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is known to assure very precise stoichiometry of the final product in comparison with a tailored composition. XRPD, Raman spectroscopy, TEM and BET measurements were used to characterize the nanopowders at room temperature. It was shown that all obtained powders were single phase solid solutions with a fluorite-type crystal structure and all powder particles have nanometric size (about 3-4 nm). Densification was performed at 1550 degrees C, in an air atmosphere for 2 h. XRPD, SEM and complex impedance method measurements were carried out on sintered samples. Single phase form was evidenced for each sintered materials. The best value of conductivity at 700 degrees C amounted to 1.10 x 10(-2) Omega(-1) cm(-1) for Ce0.85Er0.O-3(2-delta) sample. Corresponding activation energies of conductivity amounted to 0.28 eV in the temperature range 500-700 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. In this paper we describe a systematic and comparative study on Ag/BSCCO composite, made by the citrate route, in which the ceramic pellets are sintered in the presence of silver powder using several proportions and having several granulations. It was observed that the introduction of fine (0.5 and 2 μm) silver powder in the proportions of 5 wt. % always implies in a better critical current density compared to the no silver pellet. According to the results, the silver powder in excess of 5 wt.% may not promote best electrical properties, depending on the size of the silver particles.
Resumo:
The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.