819 resultados para Energy consumption data sets
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
Combining human-computer interaction and urban informatics, this design research developed and tested novel interfaces offering users real-time feedback on their paper and energy consumption. Findings from deploying these interfaces in both domestic and office environments in Australia, the UK, and Ireland, will innovate future generations of resource monitoring technologies. The study draws conclusions with implications for government policy, the energy industry, and sustainability researchers.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.
Resumo:
The power consumption of wireless sensor networks (WSN) module is an important practical concern in building energy management (BEM) system deployments. A set of metrics are created to assess the power profiles of WSN in real world condition. The aim of this work is to understand and eventually eliminate the uncertainties in WSN power consumption during long term deployments and the compatibility with existing and emerging energy harvesting technologies. This paper investigates the key metrics in data processing, wireless data transmission, data sensing and duty cycle parameter to understand the system power profile from a practical deployment prospective. Based on the proposed analysis, the impacts of individual metric on power consumption in a typical BEM application are presented and the subsequent low power solutions are investigated.
Resumo:
Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.
Resumo:
The International Energy Agency has repeatedly identified increased end-use energy efficiency as the quickest, least costly method of green house gas mitigation, most recently in the 2012 World Energy Outlook, and urges all governing bodies to increase efforts to promote energy efficiency policies and technologies. The residential sector is recognised as a major potential source of cost effective energy efficiency gains. Within the EU this relative importance can be seen from a review of the National Energy Efficiency Action Plans (NEEAP) submitted by member states, which in all cases place a large emphasis on the residential sector. This is particularly true for Ireland whose residential sector has historically had higher energy consumption and CO2 emissions than the EU average and whose first NEEAP targeted 44% of the energy savings to be achieved in 2020 from this sector. This thesis develops a bottom-up engineering archetype modelling approach to analyse the Irish residential sector and to estimate the technical energy savings potential of a number of policy measures. First, a model of space and water heating energy demand for new dwellings is built and used to estimate the technical energy savings potential due to the introduction of the 2008 and 2010 changes to part L of the building regulations governing energy efficiency in new dwellings. Next, the author makes use of a valuable new dataset of Building Energy Rating (BER) survey results to first characterise the highly heterogeneous stock of existing dwellings, and then to estimate the technical energy savings potential of an ambitious national retrofit programme targeting up to 1 million residential dwellings. This thesis also presents work carried out by the author as part of a collaboration to produce a bottom-up, multi-sector LEAP model for Ireland. Overall this work highlights the challenges faced in successfully implementing both sets of policy measures. It points to the wide potential range of final savings possible from particular policy measures and the resulting high degree of uncertainty as to whether particular targets will be met and identifies the key factors on which the success of these policies will depend. It makes recommendations on further modelling work and on the improvements necessary in the data available to researchers and policy makers alike in order to develop increasingly sophisticated residential energy demand models and better inform policy.
Resumo:
We present TProf, an energy profiling tool for OpenMP-like task-parallel programs. To compute the energy consumed by each task in a parallel application, TProf dynamically traces the parallel execution and uses a novel technique to estimate the per-task energy consumption. To achieve this estimation, TProf apportions the total processor energy among cores and overcomes the limitation of current works which would otherwise make parallel accounting impossible to achieve. We demonstrate the value of TProf by characterizing a set of task parallel programs, where we find that data locality, memory access patterns and task working sets are responsible for significant variance in energy consumption between seemingly homogeneous tasks. In addition, we identify opportunities for fine-grain energy optimization by applying per-task Dynamic Voltage and Frequency Scaling (DVFS).
Resumo:
Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption.
This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.