856 resultados para Energetic efficiency
Resumo:
Atualmente, os aterros sanitários representam uma solução para a gestão e tratamento dos resíduos sólidos urbanos. Da deposição, ocorrem duas formas de emissões ao longo do tempo, a produção de biogás e de lixiviados, que resultam sobretudo da decomposição da matéria orgânica. Um dos principais constituintes do biogás é o metano, o qual tem elevado poder calorífico. O presente trabalho aborda, a maximização da valorização energética em aterros sanitários, recorrendo a equipamentos baseados no Ciclo Orgânico de Rankine (ORC) para a produção de eletricidade. É apresentado como caso de estudo a central de valorização energética da Suldouro, em Sermonde, que produz eletricidade a partir do biogás resultante da decomposição da matéria orgânica depositada em aterro. O biogás é utilizado como combustível para os motogeradores utilizados para o seu aproveitamento energético, sendo que apenas cerca de 40% do potencial energético contido no biogás é transformado em eletricidade, registando-se perdas sobretudo nas emissões dos gases de exaustão e na água de arrefecimento dos motores. Para avaliação do potencial da recuperação energética dos gases de escape é avaliado o desempenho termodinâmico do ciclo ORC. Para tal foi desenvolvida uma ferramenta em MATLAB utilizando como modelo a configuração do ORC com recuperador de calor. O cálculo das propriedades termodinâmicas dos fluidos foi obtido através da criação de uma sub-rotina que chama o programa CoolProp. Este programa restitui propriedades como a entalpia, entropia, pressões e temperaturas em cada ponto do ciclo, permitindo assim ao utilizador otimizar o tempo na obtenção de resultados. A avaliação económica é fundamental na tomada de decisões por parte do investidor e dos financiadores do projeto. É então apresentada a análise económica e efetuada uma análise de sensibilidade, onde foram efetuadas variações nos vetores mais importantes de forma a poder avaliar-se o impacto em termos da sua rentabilidade. A ferramenta desenvolvida permite obter de forma prática, os três indicadores económicos extremamente influentes no que se refere à tomada de decisão. A utilização dos sistemas ORC e os seus benefícios não se esgotam na maximização dos aproveitamentos da valorização energética em aterros sanitários. Também a recuperação de calor para a produção de energia elétrica pode ter um impacto importante em muitos setores intensivos de energia, contribuindo significativamente para a redução do consumo e aumentando a eficiência de todo o processo de produção.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
Buildings account for 40% of total energy consumption in the European Union. The reduction of energy consumption in the buildings sector constitute an important measure needed to reduce the Union's energy dependency and greenhouse gas emissions. The Portuguese legislation incorporate this principles in order to regulate the energy performance of buildings. This energy performance should be accompanied by good conditions for the occupants of the buildings. According to EN 15251 (2007) the four factors that affect the occupant comfort in the buildings are: Indoor Air Quality (IAQ), thermal comfort, acoustics and lighting. Ventilation directly affects all except the lighting, so it is crucial to understand the performance of it. The ventilation efficiency concept therefore earn significance, because it is an attempt to quantify a parameter that can easily distinguish the different options for air diffusion in the spaces. The two indicators most internationally accepted are the Air Change Efficiency (ACE) and the Contaminant Removal Effectiveness (CRE). Nowadays with the developed of the Computational Fluid Dynamics (CFD) the behaviour of ventilation can be more easily predicted. Thirteen strategies of air diffusion were measured in a test chamber through the application of the tracer gas method, with the objective to validate the calculation by the MicroFlo module of the IES-VE software for this two indicators. The main conclusions from this work were: that the values of the numerical simulations are in agreement with experimental measurements; the value of the CRE is more dependent of the position of the contamination source, that the strategy used for the air diffusion; the ACE indicator is more appropriate for quantifying the quality of the air diffusion; the solutions to be adopted, to maximize the ventilation efficiency should be, the schemes that operate with low speeds of supply air and small differences between supply air temperature and the room temperature.
Resumo:
Urinary tract infection (UTI) is one of the most prevalent pathologies in developed countries, particularly in women, characterized by the presence of bacterial growth in any part of the urinary system. Currently, urine culture is considered the gold standard method for the diagnosis of UTI. However, this method has several disadvantages including the time necessary for obtaining the results and the associated high costs. Therefore, it is important to evaluate new efficient and valuable methods for the diagnosis of these infections. Objectives: Presently, dipsticks are considered a possible valuable alternative to urine culture. This method has very low costs associated and the results can be obtained in few minutes. Here we aim to compare the sensibility, specificity, predictive value of a positive test and a negative test of both methods in order to determine the efficiency of the test strips method and also to characterize the microorganism more frequently isolated.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
The purpose of this paper is to analyse the efficiency of ISO 9001 from a holistic theoretical approach where the Contingency theory, the Institutional theory and the Resources-Based View are integrated. The study was carried out in companies of different sectors of activity in Portugal, based on a qualitative methodology (interviews). The fact of the interviews having been undertaken under an ISO 9001 structure made it easier for companies to grasp the issues under investigation. An ISO 9001 characterisation was carried out on a theoretical framework approach and findings point out efficiency gains and revealed that the absence of ISO 9001 would work as a competitive disadvantage. The contribution of this research aims to reinforce the state of art as concerns the theoretical scope of analysis of these issues enriched by the case study achievement.
Resumo:
Purpose – the aim of this paper is to analyse the diffusion and efficiency of ISO 9001 on different sectors of activity Design/methodology/approach – for that purpose, a holistic an integrative theoretical approach was based on the scope of the Contingency theory, the Institutional theory and the Resources-Based View (RBV). This theorethical perspective was used in a broad empirical study, using a qualitative and quantitative methodology, concerning Portuguese companies from different sectors of activity. Findings – according to the findings from both perspectives, a ranked combination of the named theoretical frame was constructed. Research limitations/implications – as to the analysis of the efficiency of ISO 9000, one of the limitations of this study lays in the consideration of just two sectors of activity, and another relates to its domestic geographical placement. Practical implications – this study used the ISO 9001 structure for the interviews and this has revealed very useful for the organizations to grasp the matters inquired. Originality/value – a relevant contribution to the state of art is achieved through the considered theoretical scope of analysis
Resumo:
This work reports on the results of double immunodiffusion (ID), counterimmunoelectrophoresis (CIE), complement fixation (CF) and indirect immunofluorescence (IIF) techniques in the serodiagnosis of paracoccidioidomycosis. The study was undertaken on four groups of individuals: 46 patients with untreated paracoccidioidomycosis, 22 patients with other deep mycoses, 30 with other infectious diseases (tuberculosis and cutaneous leishmaniasis) and 47 blood donors as negative controls. Data were obtained using Paracoccidioides brasiliensis antigens, i.e.,a yeast culture filtrate for ID, CIE and CF, and a yeast cell suspension for IIF. The sensitivity, specificity and efficiency values were measured according to GALEN & GAMBINO8.The gel precipitation tests (ID and CIE) showed the greatest sensitivity (91.3 and 95.6%, respectively), maximum specificity (100%) and the highest efficiency values when compared to the CF and IIF tests.
Resumo:
The ventilation efficiency concept is an attempt to quantify a parameter that can easily distinguish the different options for air diffusion in the building spaces. Thirteen strategies of air diffusion were measured in a test chamber through the application of the tracer gas method, with the objective to validate the calculation by Computational fluid dynamics (CFD). Were compared the Air Change Efficiency (ACE) and the Contaminant Removal Effectiveness (CRE), the two indicators most internationally accepted. The main results from this work shows that the values of the numerical simulations are in good agreement with experimental measurements and also, that the solutions to be adopted for maximizing the ventilation efficiency should be the schemes that operate with low speeds of supply air and small differences between supply air temperature and the room temperature.