331 resultados para Elm.
Resumo:
PURPOSE: To quantify optical coherence tomography (OCT) images of the central retina in patients with blue-cone monochromatism (BCM) and achromatopsia (ACH) compared with healthy control individuals. METHODS: The study included 15 patients with ACH, 6 with BCM, and 20 control subjects. Diagnosis of BCM and ACH was established by visual acuity testing, morphologic examination, color vision testing, and Ganzfeld ERG recording. OCT images were acquired with the Stratus OCT 3 (Carl Zeiss Meditec AG, Oberkochen, Germany). Foveal OCT images were analyzed by calculating longitudinal reflectivity profiles (LRPs) from scan lines. Profiles were analyzed quantitatively to determine foveal thickness and distances between reflectivity layers. RESULTS: Patients with ACH and BCM had a mean visual acuity of 20/200 and 20/60, respectively. Color vision testing results were characteristic of the diseases. The LRPs of control subjects yielded four peaks (P1-P4), presumably representing the RPE (P1), the ovoid region of the photoreceptors (P2), the external limiting membrane (ELM) (P3), and the internal limiting membrane (P4). In patients with ACH, P2 was absent, but foveal thickness (P1-P4) did not differ significantly from that in the control subjects (187 +/- 20 vs. 192 +/- 14 microm, respectively). The distance from P1 to P3 did not differ significantly (78 +/- 10 vs. 82 +/- 5 microm) between ACH and controls subjects. In patients with BCM, P3 was lacking, and P2 advanced toward P1 compared with the control subjects (32 +/- 6 vs. 48 +/- 4 microm). Foveal thickness (153 +/- 16 microm) was significantly reduced compared with that in control subjects and patients with ACH. CONCLUSIONS: Quantitative OCT image analysis reveals distinct patterns for controls subjects and patients with ACH and BCM, respectively. Quantitative analysis of OCT imaging can be useful in differentiating retinal diseases affecting photoreceptors. Foveal thickness is similar in both normal subjects and patients with ACH but is decreased in patients with BCM.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies.A detailed explanation and elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE statement will contribute to improving the quality of reporting of observational studies
Resumo:
Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalizability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies.The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers.This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated web site (http://www.strobe-statement.org) should be helpful resources to improve reporting of observational research.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed "Explanation and Elaboration" document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies. The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers. This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated Web site (http://www.strobe-statement.org/) should be helpful resources to improve reporting of observational research.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover 3 main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors, to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all 3 study designs and 4 are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available at http://www.annals.org and on the Web sites of PLoS Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
ABSTRACT: BACKGROUND: Sierra Leone has undergone a decade of civil war from 1991 to 2001. From this period few data on immunization coverage are available, and conflict-related delays in immunization according to the Expanded Programme on Immunization (EPI) schedule have not been investigated. We aimed to study delays in childhood immunization in the context of civil war in a Sierra Leonean community. METHODS: We conducted an immunization survey in Kissy Mess-Mess in the Greater Freetown area in 1998/99 using a two-stage sampling method. Based on immunization cards and verbal history we collected data on immunization for tuberculosis, diphtheria, tetanus, pertussis, polio, and measles by age group (0-8/9-11/12-23/24-35 months). We studied differences between age groups and explored temporal associations with war-related hostilities taking place in the community. RESULTS: We included 286 children who received 1690 vaccine doses; card retention was 87%. In 243 children (85%, 95% confidence interval (CI): 80-89%) immunization was up-to-date. In 161 of these children (56%, 95%CI: 50-62%) full age-appropriate immunization was achieved; in 82 (29%, 95%CI: 24-34%) immunization was not appropriate for age. In the remaining 43 children immunization was partial in 37 (13%, 95%CI: 9-17) and absent in 6 (2%, 95%CI: 1-5). Immunization status varied across age groups. In children aged 9-11 months the proportion with age-inappropriate (delayed) immunization was higher than in other age groups suggesting an association with war-related hostilities in the community. CONCLUSION: Only about half of children under three years received full age-appropriate immunization. In children born during a period of increased hostilities, immunization was mostly inappropriate for age, but recommended immunizations were not completely abandoned. Missing or delayed immunization represents an additional threat to the health of children living in conflict areas.
Resumo:
BACKGROUND: Abstracts of presentations at scientific meetings are usually available only in conference proceedings. If subsequent full publication of abstract results is based on the magnitude or direction of study results, publication bias may result. Publication bias, in turn, creates problems for those conducting systematic reviews or relying on the published literature for evidence. OBJECTIVES: To determine the rate at which abstract results are subsequently published in full, and the time between meeting presentation and full publication. To assess the association between study characteristics and full publication. SEARCH STRATEGY: We searched MEDLINE, EMBASE, The Cochrane Library, Science Citation Index, reference lists, and author files. Date of most recent search: June 2003. SELECTION CRITERIA: We included all reports that examined the subsequent full publication rate of biomedical results initially presented as abstracts or in summary form. Follow-up of abstracts had to be at least two years. DATA COLLECTION AND ANALYSIS: Two reviewers extracted data. We calculated the weighted mean full publication rate and time to full publication. Dichotomous variables were analyzed using relative risk and random effects models. We assessed time to publication using Kaplan-Meier survival analyses. MAIN RESULTS: Combining data from 79 reports (29,729 abstracts) resulted in a weighted mean full publication rate of 44.5% (95% confidence interval (CI) 43.9 to 45.1). Survival analyses resulted in an estimated publication rate at 9 years of 52.6% for all studies, 63.1% for randomized or controlled clinical trials, and 49.3% for other types of study designs.'Positive' results defined as any 'significant' result showed an association with full publication (RR = 1.30; CI 1.14 to 1.47), as did 'positive' results defined as a result favoring the experimental treatment (RR =1.17; CI 1.02 to 1.35), and 'positive' results emanating from randomized or controlled clinical trials (RR = 1.18, CI 1.07 to 1.30).Other factors associated with full publication include oral presentation (RR = 1.28; CI 1.09 to 1.49); acceptance for meeting presentation (RR = 1.78; CI 1.50 to 2.12); randomized trial study design (RR = 1.24; CI 1.14 to 1.36); and basic research (RR = 0.79; CI 0.70 to 0.89). Higher quality of abstracts describing randomized or controlled clinical trials was also associated with full publication (RR = 1.30, CI 1.00 to 1.71). AUTHORS' CONCLUSIONS: Only 63% of results from abstracts describing randomized or controlled clinical trials are published in full. 'Positive' results were more frequently published than not 'positive' results.