956 resultados para Electrical dipoles
Resumo:
La-graded heterostructure films were prepared by sol-gel technique on platinum substrates and electrical properties of these films were compared with those of conventional thin films of similar compositions. X-ray diffraction results indicate the pure perovskite polycrystalline structure of these films. Atomic Force Microscopy analysis revealed a finer grain size and relatively lower surface roughness. Relatively higher values of Pm and Pr (69 and 38 ?C cm?2, respectively) and excellent dielectric properties with lower loss (K=1900, tan ?=0.035 at 100 kHz) were observed for La-graded heterostructure films. Also lower leakage current density (not, vert, similar2.5 nA cm?2) and a higher onset field (not, vert, similar50 kV cm?1) of space charge conduction indicated higher breakdown strength and good leakage current characteristics. The ac electric field dependence of the permittivity at sub-switching fields was analyzed in the framework of the Rayleigh dynamics of domain walls. The estimated irreversible domain wall displacement contribution to the total dielectric permittivity was 17 and 9% for conventional 15 at.% La doped PbTiO3 and La-graded heterostructure films, respectively. The improved dielectric and polarization behavior of La-graded heterostructure films may be attributed to homogenous dopant distribution compared to the conventional 15 at.% La doped PbTiO3 films.
Resumo:
The recent studies on the switching. behavior of several chalcogenide semiconductors indicate that there exists a close relation between the electrical switching and structural effects in these materials; the two network topological Thresholds, namely the Rigidity Percolation and the Chemical Threshold are found to influence considerably the composition dependence of the switching voltages/fields of many memory and threshold switching glasses. Further, changes in the coordination of constituent atoms are found to effect a change in the switching behavior (memory to threshold), Also, an interesting relation has been established between the type of switching exhibited and the thermal diffusivity of the material.
Resumo:
The current�voltage characteristics of Au/n-GaAs Schottky diodes grown by metal-organic vapor-phase epitaxy on Ge substrates were determined in the temperature range 80�300 K. The zero-bias barrier height for current transport decreases and the ideality factor increases at low temperatures. The ideality factor was found to show the T0 effect and a higher characteristic energy. The excellent matching between the homogeneous barrier height and the effective barrier height was observed and infer good quality of the GaAs film. No generation�recombination current due to deep levels arising during the GaAs/Ge heteroepitaxy was observed in this study. The value of the Richardson constant was found to be 7.04 A K?2 cm?2, which is close to the value used for the determination of the zero-bias barrier height.
Resumo:
We have shown that the general theories of metals and semiconductors can be employed to understand the diameter and voltage dependency of current through metallic and semiconducting carbon nanotubes, respectively. The current through a semiconducting multiwalled carbon nanotube (MWCNT) is associated with the energy gap that is different for different shells. The contribution of the outermost shell is larger as compared to the inner shells. The general theories can also explain the diameter dependency of maximum current through nanotubes. We have also compared the current carrying ability of a MWCNT and an array of the same diameter of single wall carbon nanotubes (SWCNTs) and found that MWCNTs are better suited and deserve further investigation for possible applications as interconnects.
Resumo:
In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.
Resumo:
We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.
Resumo:
A study was done on pulsed laser deposited relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with template layers to observe the influence of the template layers on physical and electrical properties. Initial results, showed that perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on Pt/Ti/SiO2/Si substrates. The films were grown at 300°C and then annealed in a rapid thermal annealing furnace in the temperature range of 750-850°C to induce crystallization. Comparison of the films annealed at different temperatures revealed a change in crystallinity, perovskite phase formation and grain size. These results were further used to improve the quality of the perovskite PMN-PT phase by inserting thin layers of TiO2 on the Pt substrate. These resulted in an increase in perovskite phase in the films even at lower annealing temperatures. Dielectric studies on the PMN-PT films show very high values of dielectric constant (1300) at room temperature, which further improved with the insertion of the template seed layer. The relaxor properties of the PMN-PT were correlated with Vogel-Fulcher theory to determine the actual nature of the relaxation process.
Resumo:
The absorption and index of refraction of polypyrrole (PPy) and poly-3-methylthiophene (PMeT), from low frequencies up to 4 THz, have been measured by tera-Herz (THz) time-domain spectroscopy. The complex conductance was obtained over this range of frequency. Highly conducting metallic samples follow the Drude model, whereas less conducting ones fit the localization-modified Drude model. The carrier scattering time and mobility in conducting polymers can be directly determined from these measurements.
Resumo:
YMnO3 thin films were grown on an n-type Si substrate by nebulized spray pyrolysis in the metal-ferroelectric-semiconductor (MFS) configuration. The capacitance-voltage characteristics of the film in the MFS structure exhibit hysteretic behaviour consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of the interface states decreases with increasing annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current, measured in the accumulation region, is lower in well-crystallized thin films and obeys a space-charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of the Arrhenius plot reveals that the activation energy corresponds to oxygen vacancy motion.
Resumo:
The I-V characteristics of bulk As40Te60-xSex and As35Te65-xSex glasses have been studied with a current sweep of 0-18 mA-0, over a wide range of compositions (4 less than or equal to x less than or equal to 22). All the glasses studied showed a threshold electrical switching behaviour. The number of switching cycles withstood by the samples has been found to depend on the ON-state current. It is seen that the switching voltages increase with increase in selenium content. Further, the switching voltages are found to be almost independent of the thickness of the sample (d), in the range 0.18-0.3 mm. Also, the switching voltages and the number of switching cycles withstood by the samples are found to decrease with temperature.
Resumo:
Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 degreesC using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 degreesC to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 degreesC. Films with highest perovskite content were found to form at 820-840 degreesC on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 degreesC. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan delta) of 0.035 at a frequency of 1 kHz at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol-gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 A degrees C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 A degrees C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tan delta) were increased with increase of annealing temperature.