962 resultados para Effective Temperature
Resumo:
Annually laminated (varved) sediments of proglacial Lake Silvaplana (46 ̊27’N, 9 ̊48’E, 1791 m a.s.l., Engadine, eastern Swiss Alps) provide an excellent archive for quantitative high-resolution (seasonal – annual) reconstruction of high- and lowfrequency climate signals back to AD 1580. The chronology of the core is based on varve counting, Cs-137, Pb-210 and event stratigraphy. In this study we present a reconstruction based on in-situ reflectance spectroscopy. In situ reflectance spectroscopy is known as a cost- and time-effective non destructtive method for semi-quantitative analysis of pigments (e.g., chlorines and carotenoids) and of lithoclastic sediment fractions. Reflectance-dependent absorption (RDA) was measured with a Gretac Macbeth spectrolino at 2 mm resolution. The spectral coverage ranges from 380 nm to 730 nm at 10 nm band resolution. In proglacial Lake Silvaplana, 99% of the sediment is lithoclastic prior to AD 1950. Therefore, we concentrate on absorption features that are characteristic for lithoclastic sediment fractions. In Lake Silvaplana, two significant correlations that are stable in time were found between RDA typical for lithoclastics and meteorological data: (1) the time series R 570 /R 630 (ratio between RDA at 570 nm and 630 nm) of varves in Lake Silvaplana and May to October temperatures at nearby station of Sils correlate highly significantly (calibration period AD 1864 – 1951, r = 0.74, p < 0.01 for 5ptsmoothed series; RMSE is 0.28 ̊C, RE = 0.41 and CE = 0.38), and (2) the minimum reflectance within the 690nm band (min690) data correlate with May to October (calibration period AD 1864 – 1951, r = 0.68, p < 0.01 for 5pt-smoothed series; RMSE = 0.22 ̊C, RE = 0.5, CE = 0.31). Both proxy series (min690nm and R 570 /R 630 values) are internally highly consistent (r = 0.8, p < 0.001). In proglacial Lake Silvaplana the largest amount of sediment is transported by glacial meltwater. The melting season spans approximately from May to October, which gives us a good understanding of the geophysical processes explaining the correlations between lithoclastic proxies and the meteorological data. The reconstructions were extended back to AD 1580 and show a broad corresponddence with fully independent reconstructions from tree rings and documentary data.
Resumo:
We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.
Resumo:
The Interstellar Boundary Explorer (IBEX) samples the interstellar neutral (ISN) gas flow of several species every year from December through late March when the Earth moves into the incoming flow. The first quantitative analyses of these data resulted in a narrow tube in four-dimensional interstellar parameter space, which couples speed, flow latitude, flow longitude, and temperature, and center values with approximately 3° larger longitude and 3 km s⁻¹ lower speed, but with temperatures similar to those obtained from observations by the Ulysses spacecraft. IBEX has now recorded six years of ISN flow observations, providing a large database over increasing solar activity and using varying viewing strategies. In this paper, we evaluate systematic effects that are important for the ISN flow vector and temperature determination. We find that all models in use return ISN parameters well within the observational uncertainties and that the derived ISN flow direction is resilient against uncertainties in the ionization rate. We establish observationally an effective IBEX-Lo pointing uncertainty of ±0°18 in spin angle and confirm an uncertainty of ±0°1 in longitude. We also show that the IBEX viewing strategy with different spin-axis orientations minimizes the impact of several systematic uncertainties, and thus improves the robustness of the measurement. The Helium Warm Breeze has likely contributed substantially to the somewhat different center values of the ISN flow vector. By separating the flow vector and temperature determination, we can mitigate these effects on the analysis, which returns an ISN flow vector very close to the Ulysses results, but with a substantially higher temperature. Due to coupling with the ISN flow speed along the ISN parameter tube, we provide the temperature Tvisn∞=8710+440/-680 K for Visn∞=26 km s⁻¹ for comparison, where most of the uncertainty is systematic and likely due to the presence of the Warm Breeze.
Resumo:
Purpose. The central concepts in pressure ulcer risk are exposure to external pressure caused by inactivity and tissue tolerance to pressure, a factor closely related to blood flow. Inactivity measures are effective in predicting pressure ulcer risk. The purpose of the study is to evaluate whether a physiological measure of skin blood flow improves pressure ulcer risk prediction. Skin temperature regularity and self-similarity, as proxy measures of blood flow, and not previously described, may be undefined pressure ulcer risk factors. The specific aims were to determine whether a sample of nursing facility residents at high risk of pressure ulcers classified using the Braden Scale for Pressure Sore Risk© differ from a sample of low risk residents according to (1) exposure to external pressure as measured by resident activity, (2) tissue tolerance to external pressure as measured by skin temperature, and (3) skin temperature fluctuations and recovery in response to a commonly occurring stressor, bathing and additionally whether (4) scores on the Braden Scale mobility subscale score are related to entropy and the spectral exponent. ^ Methods. A two group observational time series design was used to describe activity and skin temperature regularity and self-similarity, calculating entropy and the spectral exponent using detrended fluctuation analysis respectively. Twenty nursing facility residents wore activity and skin temperature monitors for one week. One bathing episode was observed as a commonly occurring stressor for skin temperature.^ Results. Skin temperature multiscale entropy (MSE), F(1, 17) = 5.55, p = .031, the skin temperature spectral exponent, F(1, 17) = 6.19, p = .023, and the activity mean MSE, F(1, 18) = 4.52, p = .048 differentiated the risk groups. The change in skin temperature entropy during bathing was significant, t(16) = 2.55, p = .021, (95% CI, .04-.40). Multiscale entropy for skin temperature was lowest in those who developed pressure ulcers, F(1, 18) = 35.14, p < .001.^ Conclusions. This study supports the tissue tolerance component of the Braden and Bergstrom conceptual framework and shows differences in skin temperature multiscale entropy between pressure ulcer risk categories, pressure ulcer outcome, and during a commonly occurring stressor. ^
Resumo:
Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.
Resumo:
Four boreholes, drilled a few tens of meters into igneous basement on the eastern flank of the Juan de Fuca Ridge during ODP Leg 168, were sealed and instrumented for long-term monitoring to observe the hydrologic state of young sediment-sealed oceanic crust. The thermal regime is dominated by the effects of rapid fluid circulation in uppermost igneous basement driven by very small non-hydrostatic pressure gradients. Upper basement temperatures are uniform laterally between pairs of holes over distances of hundreds of meters to kilometers. In the case of two holes drilled into a sediment-buried basement ridge and adjacent valley, basement temperatures differ by less than 2 K despite the 2.2 km lateral separation of the sites and the 2.5:1 contrast in sediment cover thickness. Under conductive conditions, upper basement temperatures would differ by roughly 50 K. By comparison with modeling results, the observed degree of isothermality suggests a fluid flux of at least 10**-6 m/s (30 m/yr), and an effective permeability in the range of 10**-10 to 10**-9 m**2 in the uppermost igneous crust. The pressure difference available to drive this rapid flux between the ridge and valley, estimated by comparing the observed pressures via the isothermal upper basement hydrostat that is inferred to connect the two sites, is small (~2 kPa) and also suggests high permeability. Relative to the hydrostats defined by the local conductive sediment geotherms, substantial super-hydrostatic pressure (+18 kPa) is present within the buried basement ridge, and sub-hydrostatic pressure is present in the adjacent valley (-26 kPa). Such pressure differentials are the direct consequence of the advection-dominated thermal regime and small pressure losses in high-permeability basement, and are available to drive fluid seepage through sediment sections vertically up above and horizontally away from buried ridges, and down above valleys. No constraints are provided by any of the observations on the depth in the crust to which thermally or chemically significant flow might extend, although just as in the overlying sediments, the pattern of deep flow may be affected by the near-isothermal and near-hydrostatic conditions present in the permeable uppermost crustal section.
Resumo:
This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.
Resumo:
Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.
Resumo:
Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 µmol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.
Resumo:
Diseases that affect garlic during storage can lead to severe economic losses for farmers worldwide. One causal agent of clove rot is Fusarium proliferatum. Here, the progress of clove rot caused by F. proliferatum and its dependence on different storage conditions and cultivar type were studied. The effect of temperature on mycelial growth, conidial viability, and fungal survival during garlic commercial storage was documented. Samples of 50 bulbs from a randomized field trial with three different clonal generations for purple garlic (F3, F4 and F5) and the F4 clonal generation for white garlic were labeled and stored for two months (short-term storage). In addition, another sample of the F5 clonal generation of purple garlic was stored for 6 months after harvest (long-term storage). The presence of the pathogen and the percentage of symptomatic cloves were evaluated. A notable difference in the rot severity index (RSI) of different garlic varieties was observed. In all studied cases, clove rot increased with storage time at 20 ◦ C, and the white garlic variety had a higher index of rot severity after two months of storage. Additionally, there were clear differences between the growth rates of F. proliferatum isolates. Studies conducted on the temperature responses of the pathogen propagules showed that expo- sure for at least 20 min at 50 ◦ C was highly effective in significantly reducing the viability of fungal conidia. Pathogenicity studies showed that the fungus is pathogenic in all commercial varieties. However, there were significant differences in varietal susceptibility between Chinese and white garlic type cultivars (81.84 ± 16.44% and 87.5 ± 23.19% symptomatic cloves, respectively) and purple cultivars (49.06 ± 13.42% symptomatic cloves)
Resumo:
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Resumo:
A filamentary model of “metallic” conduction in layered high temperature superconductive cuprates explains the concurrence of normal state resistivities (Hall mobilities) linear in T (T−2) with optimized superconductivity. The model predicts the lowest temperature T0 for which linearity holds and it also predicts the maximum superconductive transition temperature Tc. The theory abandons the effective medium approximation that includes Fermi liquid as well as all other nonpercolative models in favor of countable smart basis states.
Resumo:
There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.