968 resultados para ENDOTHELIAL PROGENITOR CELL
Resumo:
The CD3 epsilon polypeptide contributes to the cell surface display as well as to the signal transduction properties of the T-cell antigen receptor complex. Intriguingly, the distribution of CD3 epsilon is not restricted to T cells, since activated mouse, human, and avian natural killer (NK) cells do express intracytoplasmic CD3 epsilon polypeptides. CD3 epsilon is also present in the cytoplasm of fetal thymic T/NK bipotential progenitor cells, suggesting that it constitutes a component of the NK differentiation program. We report here that the genetic disruption of CD3 epsilon exon 5 alters neither NK cell development nor in vitro and in vivo NK functions, although it profoundly blocked T-cell development. These results support the notion that CD3 epsilon is dispensable for mouse NK cell ontogeny and function and further suggest that the common NK/T-cell progenitor cell utilizes CD3 epsilon as a mandatory component only when differentiating toward the T-cell lineage.
Resumo:
Erythroid progenitor growth in vitro is stimulated by exogenous platelet-derived growth factor (PDGF). We now report that both normal and transformed erythroid progenitor cells produce authentic PDGF in vitro and in vivo. Importantly, this production is highly regulated during erythropoiesis. Addition of soluble lysates from Rauscher murine erythroleukemia cells--an erythropoietin-responsive model progenitor cell line--to quiescent BALB/c 3T3 fibroblasts resulted in a mitogenic response identical to that observed with the addition of authentic recombinant PDGF. Polyclonal and monoclonal anti-PDGF antibodies immunoabsorbed 50-100% of this activity. Induction of Rauscher cell differentiation in vitro with dimethyl sulfoxide or erythropoietin for 48-72 hr markedly upregulated PDGF production by 17- to 18-fold and 14- to 38-fold, respectively. Importantly, stimulation of normal erythropoiesis in vivo in mice treated either with phenylhydrazine or with erythropoietin increased PDGF levels in the spleen by 11- to 48-fold and 20- to 34-fold, respectively. These results strongly suggest a role for erythroid cell-derived PDGF in normal erythropoiesis and provide documentation of the regulated production of a pleiotropic cytokine by erythroid cells.
Resumo:
A desnutrição proteica (DP) pode ocasionar alterações na matriz extracelular (MEC) de diferentes órgãos e tecidos, inclusive o hematopoético, com comprometimento funcional. Estudos do nosso laboratório demonstraram, em modelo murino de DP, aumento da expressão proteica de fibronectina (FN) no estroma medular ósseo in vivo, principalmente na região subendosteal (local de fixação da célula tronco progenitora hemopoética). Já in vitro, no estroma medular ósseo, observou-se tanto o aumento quanto a diminuição de FN e a presença de suas isoformas. Essas alterações de FN parecem estar envolvidas com a hipoplasia da medula óssea (MO) em camundongos desnutridos. As modificações quantitativas de FN podem ser devidas: (i) à ação das metaloproteinases de matriz (MMP) responsáveis pela degradação das proteínas da MEC; (ii) aos inibidores de metaloproteinases (TIMP) que regulam a degradação da MEC; (iii) às alterações transcricionais, reguladas pela via de AKT/mTOR, que controla os splicing alternativos na FN, resultando em isoformas dessa proteína; (iv) a processos pós-transcricionais modulados por LC3, que aumenta a tradução do RNAm de FN. Assim, o objetivo deste estudo foi elucidar os mecanismos que alteram o turnover de FN no estroma medular ósseo em modelo murino de DP. Utilizamos camundongos, C57BL/6J machos, adultos, separados em dois grupos: controle e desnutrido, alimentados, ad libitum, com ração contendo 12% e 2% de proteína, respectivamente. Após cinco semanas de indução à desnutrição os camundongos foram eutanasiados, e coletado o material biológico. Avaliamos: o estado nutricional, o hematológico, a histologia da MO femoral bem como a determinação imunohistoquímica da FN, MMP-2 e MMP-9, determinação da expressão de FN e suas isoformas em células totais da MO, o estabelecimento do estroma medular ósseo in vitro, por 28 e 35 dias de cultivo. A partir das culturas foram avaliadas a expressão de RNAm de FN e suas isoformas, MMP-2, MMP-9, TIMP-1, TIMP-2, AKT, mTOR e LC3α e β, quantificação de MMP-2, MMP-9, TIMP-1, TIMP-2,TNFα, TGFβ e IL-1β e determinação de LC3β e proteínas da via de AKT/mTOR. Não observamos alterações na expressão do RNAm de FN e suas isoformas ex vivo e in vitro, mas um aumento da deposição de FN na MO.Também não observamos modificações na imunolocalização de MMP-2 e MMP-9 na MO e na atividade dessas proteínas no sobrenadante de culturas de células estromais in vitro, mas houve aumento da expressão do RNAm de MMP-9 em 28 dias de cultivo. Não detectamos alterações na expressão de RNAm e na concentração de TIMP-1 e TIMP-2 no sobrenadante das culturas. Houve redução significativa de TNFα e TGFβ no sobrenadante das culturas de 28 dias. Observamos aumento da expressão do RNAm de mTOR em culturas de 28 dias e LC3α e LC3β em 35 dias de células estromais. Encontramos menor fosforilação de PI3K, AKT, PTEN, mTOR e mTOR total e aumento de LC3β em culturas de 28 dias, mas redução de LC3β em 35 dias. Em função dos dados inferimos que a DP conduz a alterações da FN que não estão relacionadas à ação de MMPs e TIMPs e sim a modificações de LC3β e da via de AKT/mTOR.
Resumo:
Pneumococcal meningitis (PM) causes neurological sequelae in up to half of surviving patients. Neuronal damage associated with poor outcome is largely mediated by the inflammatory host response. Dexamethasone (DXM) is used as an adjuvant therapy in adult PM, but its efficacy in the treatment of pneumococcal meningitis in children is controversially discussed. While DXM has previously been shown to enhance hippocampal apoptosis in experimental PM, its impact on hippocampal cell proliferation is not known. This study investigated the impact of DXM on hippocampal proliferation in infant rat PM. Eleven-day-old nursing Wistar rats (n = 90) were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis. Treatment with DXM or vehicle was started 18 h after infection, concomitantly with antibiotics (ceftriaxone 100 mg/kg of body weight twice a day [b.i.d.]). Clinical parameters were monitored, and the amount of cells with proliferating activity was assessed using in vivo incorporation of bromodeoxyuridine (BrdU) and an in vitro neurosphere culture system at 3 and 4 d postinfection. DXM significantly worsened weight loss and survival. Density of BrdU-positive cells, as an index of cells with proliferating activity, was significantly lower in DXM-treated animals compared to vehicle controls (P < 0.0001). In parallel, DXM reduced neurosphere formation as an index for stem/progenitor cell density compared to vehicle treatment (P = 0.01). Our findings provide clear evidence that DXM exerts an antiproliferative effect on the hippocampus in infant rat PM. We conclude that an impairment of regenerative hippocampal capacity should be taken into account when considering adjuvant DXM in the therapeutic regimen for PM in children.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.
Resumo:
Background-Marfan syndrome (MFS), a condition caused by fibrillin-1 gene mutation is associated with aortic aneurysm that shows elastic lamellae disruption, accumulation of glycosaminoglycans, and vascular smooth muscle cell (VSMC) apoptosis with minimal inflammatory response. We examined aneurysm tissue and cultured cells for expression of transforming growth factor-beta1 to -beta3 (TGF beta 1 to 3), hyaluronan content, apoptosis, markers of cell migration, and infiltration of vascular progenitor cells (CD34). Methods and Results-MFS aortic aneurysm (6 males, 5 females; age 8 to 78 years) and normal aorta (5 males, 3 females; age 22 to 56 years) were used. Immunohistochemistry showed increased expression of TGF beta 1 to 3, hyaluronan, and CD34-positive microcapillaries in MFS aneurysm compared with control. There was increased expression of TGF beta 1 to 3 and hyaluronan in MFS cultured VSMCs, adventitial fibroblasts (AF), and skin fibroblasts (SF). Apoptosis was increased in MFS (VSMC: mean cell loss in MFS 29%, n of subjects = 5, versus control 8%, n = 3, P < 0.05; AF: 28%, n = 5 versus 7%, n = 5, P < 0.05; SF: 29%, n = 3 versus 4%, n = 3, not significant). In MFS, there was a 2-fold increase in adventitial microcapillaries containing CD34-positive cells compared with control tissue. Scratch wound assay showed absence of CD44, MT1-MMP, and beta-3 integrin at the leading edge of migration in MFS indicating altered directional migration. Western blot showed increased expression of TGF beta 1 to 3 in MFS but no change in expression of CD44, MT1-MMP, or beta-3 integrin compared with controls. Conclusions-There was overexpression of TGF-beta in MFS associated with altered hyaluronan synthesis, increased apoptosis, impaired progenitor cell recruitment, and abnormal directional migration. These factors limit tissue repair and are likely to contribute to aneurysm development.
Resumo:
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.
Resumo:
Translocations in myeloma are thought to occur solely in mature B cells in the germinal center through class switch recombination (CSR). We used a targeted captured technique followed by massively parallel sequencing to determine the exact breakpoints in both the immunoglobulin heavy chain (IGH) locus and the partner chromosome in 61 presentation multiple myeloma samples. The majority of samples (62%) have a breakpoint within the switch regions upstream of the IGH constant genes and are generated through CSR in a mature B cell. However, the proportion of CSR translocations is not consistent between cytogenetic subgroups. We find that 100% of t(4;14) are CSR-mediated; however, 21% of t(11;14) and 25% of t(14;20) are generated through DH-JH recombination activation gene-mediated mechanisms, indicating they occur earlier in B-cell development at the pro-B-cell stage in the bone marrow. These 2 groups also generate translocations through receptor revision, as determined by the breakpoints and mutation status of the segments used in 10% and 50% of t(11;14) and t(14;20) samples, respectively. The study indicates that in a significant number of cases the translocation-based etiological events underlying myeloma may arise at the pro-B-cell hematological progenitor cell level, much earlier in B-cell development than was previously thought.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
Les leucémies aigues sont la conséquence d’une prolifération clonale et maligne des cellules hématopoïétiques. Elles surviennent suite à un évènement oncogénique qui se produit dans une cellule souche hématopoïétique (CSH) ou progénitrice. Cela lui confère une certaine instabilité qui engendre l’accumulation d’autres évènements génétiques et/ou épigénétiques responsables du développement clinique de la maladie. Les leucémies MLL représentent environ 10% des leucémies aigues et aujourd’hui, plus de 70 gènes de fusion ont été caractérisés. Les sangs de cordon sont une source importante de CSH et progénitrices. La purification de ces cellules et leur transformation en cellules leucémiques à l’aide de gènes de fusion MLL nous permettent de générer des leucémies aigues humaines dans des souris immunodéficientes NSG et ainsi étudier le potentiel leucémique de différents gènes de fusion MLL. Dans un premier temps, 4 gènes de fusion MLL ont été étudiés : MLL-AF9, MLL-AF4, MLL-ENL et MLL-ELL. In vitro, nous sommes capables de transformer des CSH en cellules leucémiques capables de proliférer rapidement. Les résultats in vivo nous montrent qu’il est possible de générer des leucémies avec les oncogènes MLL-AF9 et MLL-ENL. Pour les fusions MLL-ELL et MLL-AF4, bien que quelques leucémies ont pu être obtenues, plusieurs problèmes techniques nous empêchent aujourd’hui de disposer d’un modèle adéquat permettant l’étude complète de ces oncogènes. Dans un second temps, les leucémies aigues MLL-AF9 ont été étudiées dans un modèle contrôlé où les cellules souches proviennent d’un donneur unique. Grâce à ce modèle, nous avons pu démontrer que l’oncogène MLL-AF9 est suffisant pour induire le développement de la maladie. En effet aucune nouvelle mutation n’a pu être identifiée au cours du développement de la leucémie. Parmi les leucémies myéloïdes aigues (LMA) MLL-AF9 issues de ce modèle, certains gènes non mutés, dont RET, ont été identifiés comme étant de potentiels biomarqueurs de ce sous-groupe de leucémie.
Resumo:
Hematopoiesis is the tightly controlled and complex process in which the entire blood system is formed and maintained by a rare pool of hematopoietic stem cells (HSCs), and its dysregulation results in the formation of leukaemia. TRIB2, a member of the Tribbles family of serine/threonine pseudokinases, has been implicated in a variety of cancers and is a potent murine oncogene that induces acute myeloid leukaemia (AML) in vivo via modulation of the essential myeloid transcription factor CCAAT-enhancer binding protein α (C/EBPα). C/EBPα, which is crucial for myeloid cell differentiation, is commonly dysregulated in a variety of cancers, including AML. Two isoforms of C/EBPα exist - the full-length p42 isoform, and the truncated oncogenic p30 isoform. TRIB2 has been shown to selectively degrade the p42 isoform of C/EBPα and induce p30 expression in AML. In this study, overexpression of the p30 isoform in a bone marrow transplant (BMT) leads to perturbation of myelopoiesis, and in the presence of physiological levels of p42, this oncogene exhibited weak transformative ability. It was also shown by BMT that despite their degradative relationship, expression of C/EBPα was essential for TRIB2 mediated leukaemia. A conditional mouse model was used to demonstrate that oncogenic p30 cooperates with TRIB2 to reduce disease latency, only in the presence of p42. At the molecular level, a ubiquitination assay was used to show that TRIB2 degrades p42 by K48-mediated proteasomal ubiquitination and was unable to ubiquitinate p30. Mutation of a critical lysine residue in the C-terminus of C/EBPα abrogated TRIB2 mediated C/EBPα ubiquitination suggesting that this site, which is frequently mutated in AML, is the site at which TRIB2 mediates its degradative effects. The TRIB2-C/EBPα axis was effectively targeted by proteasome inhibition. AML is a very difficult disease to target therapeutically due to the extensive array of chromosomal translocations and genetic aberrations that contribute to the disease. The cell from which a specific leukaemia arises, or leukaemia initiating cell (LIC), can affect the phenotype and chemotherapeutic response of the resultant disease. The LIC has been elucidated for some common oncogenes but it is unknown for TRIB2. The data presented in this thesis investigate the ability of the oncogene TRIB2 to transform hematopoietic stem and progenitor cells in vitro and in vivo. TRIB2 overexpression conferred in vitro serially replating ability to all stem and progenitor cells studied. Upon transplantation, only TRIB2 overexpressing HSCs and granulocyte/macrophage progenitors (GMPs) resulted in the generation of leukaemia in vivo. TRIB2 induced a mature myeloid leukaemia from the GMP, and a mixed lineage leukaemia from the HSC. As such the role of TRIB2 in steady state hematopoiesis was also explored using a Trib2-/- mouse and it was determined that loss of Trib2 had no effect on lineage distribution in the hematopoietic compartment under steady-state conditions. The process of hematopoiesis is controlled by a host of lineage restricted transcription factors. Recently members of the Nuclear Factor 1 family of transcription factors (NFIA, NFIB, NFIC and NFIX) have been implicated in hematopoiesis. Little is known about the role of NFIX in lineage determination. Here we describe a novel role for NFIX in lineage fate determination. In human and murine datasets the expression of Nfix was shown to decrease as cells differentiated along the lymphoid pathway. NFIX overexpression resulted in enhanced myelopoiesis in vivo and in vitro and a block in B cell development at the pre-pro-B cell stage. Loss of NFIX resulted in disruption of myeloid and lymphoid differentiation in vivo. These effects on stem and progenitor cell fate correlated with changes in the expression levels of key transcription factors involved in hematopoietic differentiation including a 15-fold increase in Cebpa expression in Nfix overexpressing cells. The data presented support a role for NFIX as an important transcription factor influencing hematopoietic lineage specification. The identification of NFIX as a novel transcription factor influencing lineage determination will lead to further study of its role in hematopoiesis, and contribute to a better understanding of the process of differentiation. Elucidating the relationship between TRIB2 and C/EBPα not only impacts on our understanding of the pathophysiology of AML but is also relevant in other cancer types including lung and liver cancer. Thus in summary, the data presented in this thesis provide important insights into key areas which will facilitate the development of future therapeutic approaches in cancer treatment.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
Introduction : Malgré leur état non-prolifératif in vivo, les cellules endothéliales cornéennes (CEC) peuvent être amplifiées in vitro. Leur transplantation subséquente par injection intracamérale pourrait surmonter la pénurie de tissus associée à l’allo-greffe traditionnelle – l’unique traitement définitif disponible pour les endothéliopathies cornéennes. Objectif : Évaluer la fonctionnalité d’un endothélium cornéen reconstitué par injection de CEC dans la chambre antérieure du félin. Méthodes : Les yeux droits de 16 animaux ont été opérés. Huit ont été désendothélialisés centralement avec injection de 2x10e5 (n=4) ou 1x10e6 (n=4) CEC félines supplémentées avec Y-27632 et marquées avec SP-DiOC18(3). Deux ont été désendothélialisés complètement et injectés avec 1x10e6 CEC et Y-27632. Six contrôles ont été désendothélialisés centralement (n=3) ou complètement (n=3) et injectés avec Y-27632 sans CEC. La performance clinique, l’intégrité anatomique, le phénotype fonctionnel et l’expression de SP-DiOC18(3) du nouvel endothélium ont été étudiés. Résultats : Les cornées greffées avec 2x10e5 CEC et les contrôles désendothélialisés centralement ont réussi le mieux cliniquement. Les contrôles désendothélialisés complètement sont restés opaques. L’histopathologie a révélé une monocouche endothéliale fonctionnelle dans les cornées greffées avec 2x10e5 CEC et les contrôles désendothélialisés centralement, une multicouche endothéliale non-fonctionnelle dans les cornées désendothélialisées centralement et greffées avec 1x10e6 CEC, et un endothélium fibrotique non-fonctionnel dans les cornées désendothélialisées complètement. L’expression de SP-DiOC18(3) était rare dans les greffes. Conclusion : La thérapie par injection cellulaire a reconstitué un endothélium partiellement fonctionnel, auquel les CEC injectées n’ont contribué que peu. L’injection de Y-27632 sans CEC a reconstitué l’endothélium le plus sain. Des études additionnelles investiguant l’effet thérapeutique de Y-27632 seul sont justifiées.