972 resultados para EEG neonatal
Resumo:
Coagulase-negative staphylococci (CoNS) are the microorganisms most frequently isolated from clinical samples and are commonly found in neonatal blood cultures. Oxacillin is an alternative treatment of choice for CoNS infections; however, resistance to oxacillin can have a substantial impact on healthcare by adversely affecting morbidity and mortality. The objective of this study was to detect and characterise oxacillin-resistant CoNS strains in blood cultures of newborns hospitalised at the neonatal ward of the University Hospital of the Faculty of Medicine of Botucatu. One hundred CoNS strains were isolated and the mecA gene was detected in 69 of the CoNS strains, including 73.2% of Staphylococcus epidermidis strains, 85.7% of Staphylococcus haemolyticus strains, 28.6% of Staphylococcus hominis strains and 50% of Staphylococcus lugdunensis strains. Among these oxacillin-resistant CoNS strains, staphylococcal cassette chromosome mec (SCCmec) type I was identified in 24.6%, type II in 4.3%, type III in 56.5% and type IV in 14.5% of the strains. The data revealed an increase in the percentage of CoNS strains isolated from blood cultures from 1991-2009. Furthermore, a predominant SCCmec profile of the oxacillin-resistant CoNS strains isolated from neonatal intensive care units was identified with a prevalence of SCCmec types found in hospital-acquired strains.
Resumo:
OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.
Resumo:
Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2g/day, 6 months) significantly improved the negative symptoms and reduced sideeffects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDA-dependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. The topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization, thus linking EEG synchronization to the improvement of the clinical picture. Conclusions: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.
Resumo:
During the last decade, the development of "bedside" investigative methods, including indirect calorimetry, nutritional balance and stable isotope techniques, have given a new insight into energy and protein metabolism in the neonates. Neonates and premature infants especially, create an unusual opportunity to study the metabolic adaptation to extrauterine life because their physical environment can be controlled, their energy intake and energy expenditure can be measured and the link between their protein metabolism and the energetics of their postnatal growth can be assessed with accuracy. Thus, relatively abstract physiological concepts such as the postnatal timecourse of heat production, energy cost of growth, energy cost of physical activity, thermogenic effect of feeding, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified. These results show that energy expenditure and heat production rates increase postnatally from average values of 40 kcal/kgxday during the first week to 60 kcal/kgxday in the third week. This increase parellels nutritional intakes as well as the rate of weight gain. The thermogenic effect of feeding and the physical activity are relatively low and account only for an average of 5% each of the total heat production. The cost of protein turnover is the highest energy demanding process. The fact that nitrogen balance becomes positive within 72 hours after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism: dry body mass and fat decrease while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches the statural growth. The goals of the following review are to summarize recent data on the physiological aspects of energy and protein metabolism directly related to the extrauterine adaptation, to describe experimental approaches which recently were adapted to the newborns in order to get "bedside results" and to discuss how far these results can help everyday's neonatal practice.
Resumo:
Background:Amplitude-integrated electroencephalogram (aEEG) is increasingly used for neuromonitoring in preterms. We aimed to quantify the effects of gestational age (GA), postnatal age (PNA), and other perinatal factors on the development of aEEG early after birth in very preterm newborns with normal cerebral ultrasounds.Methods:Continuous aEEG was prospectively performed in 96 newborns (mean GA: 29.5 (range: 24.4-31.9) wk, birth weight 1,260 (580-2,120) g) during the first 96 h of life. aEEG tracings were qualitatively (maturity scores) and quantitatively (amplitudes) evaluated using preestablished criteria.Results:A significant increase in all aEEG measures was observed between day 1 and day 4 and for increasing GA (P < 0.001). The effect of PNA on aEEG development was 6.4- to 11.3-fold higher than that of GA. In multivariate regression, GA and PNA were associated with increased qualitative and quantitative aEEG measures, whereas small-for-GA status was independently associated with increased maximum aEEG amplitude (P = 0.003). Morphine administration negatively affected all aEEG measures (P < .05), and caffeine administration negatively affected qualitative aEEG measures (P = 0.02).Conclusion:During the first few days after birth, aEEG activity in very preterm infants significantly develops and is strongly subjected to the effect of PNA. Perinatal factors may alter the early aEEG tracing and interfere with its interpretation.
Resumo:
Se desconoce si existe un tiempo de evolución límite a partir del cual ingresar en una UMVEEG* no suponga una mejoría del pronóstico del paciente epiléptico. El estudio analiza el efecto del ingreso en la UMVEEG sobre una serie de variables pronósticas (FC**, NFAE***, CVP****) en función del tiempo de evolución desde el diagnóstico. Analizamos epilépticos diagnosticados con certeza y pacientes con crisis psicógenas. Se estudiaron 135 pacientes(Edad:39+13,5años,Sexo(55,6%mujeres).Se obtuvo una mejoría significativa de FC**(p<0,001)y CVP****(p<0,005)en los grupos estudiados independientemente del tiempo de evolución.El tiempo de evolución determinó una respuesta diferencial sobre la reducción del NFAE***excepto para crisis psicógenas,en que hubo una reducción significativa(p=0,004)independientemente del tiempo de evolución.
Resumo:
The milk-borne mouse mammary tumor virus (MMTV) infects newborn mice via the intestine. Infection is initially restricted to Peyer's patches and later spreads to the epithelial cells of the mammary gland. The receptor that mediates uptake and transport of MMTV across the intestinal barrier has not yet been identified, The neonatal Fc receptor (nFcR), which is expressed by enterocytes during the first two weeks of life, is downregulated at weaning, and its disappearance correlates with the onset of intestinal resistance to MMTV. To test whether the nFcR mediates transport and allows infection, we foster nursed on infected MMTV mothers beta2 microglobulin-deficient (beta2m-deficient) newborn mice that are unable to express the nFcR at the surface of their enterocytes. Exposure of beta2m-deficient mice to milk-borne virus resulted in the deletion of peripheral blood T cells reactive to the superantigen encoded by MMTV. Since beta2m-deficient newborn mice are susceptible to MMTV infection despite the lack of the nFcR, we conclude that the nFcR is not required for MMTV transport.
Resumo:
The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.
Resumo:
We consider electroencephalograms (EEGs) of healthy individuals and compare the properties of the brain functional networks found through two methods: unpartialized and partialized cross-correlations. The networks obtained by partial correlations are fundamentally different from those constructed through unpartial correlations in terms of graph metrics. In particular, they have completely different connection efficiency, clustering coefficient, assortativity, degree variability, and synchronization properties. Unpartial correlations are simple to compute and they can be easily applied to large-scale systems, yet they cannot prevent the prediction of non-direct edges. In contrast, partial correlations, which are often expensive to compute, reduce predicting such edges. We suggest combining these alternative methods in order to have complementary information on brain functional networks.
Resumo:
We report a newborn with respiratory distress and situs inversus totalis. The diagnosis of primary ciliary dyskinesia was confirmed by both ultrastructural and functional investigations. The immotile cilia syndrome was suspected because of respiratory distress, situs inversus, abnormal nasal discharge and hyperinflated chest X-ray. We suggest that ultrastructural and functional investigations of the respiratory mucosa should be done in any newborn with respiratory distress without explanation for the respiratory problems. Establishment of the correct diagnosis at an early stage may allow to improve the prognosis provided prophylactic physiotherapy, vaccinations, and aggressive antibiotic treatment of intercurrent respiratory infections are instituted. CONCLUSION Despite its rarity, primary ciliary dyskinesia should be considered in unexplained cases of neonatal distress.
Resumo:
PURPOSE: Early-onset sepsis (EOS) is one of the main causes for the admission of newborns to the neonatal intensive care unit. However, traditional infection markers are poor diagnostic markers of EOS. Pancreatic stone protein (PSP) is a promising sepsis marker in adults. The aim of this study was to investigate whether determining PSP improves the diagnosis of EOS in comparison with other infection markers. METHODS: This was a prospective multicentre study involving 137 infants with a gestational age of >34 weeks who were admitted with suspected EOS. PSP, procalcitonin (PCT), soluble human triggering receptor expressed on myeloid cells-1 (sTREM-1), macrophage migration inhibitory factor (MIF) and C-reactive protein (CRP) were measured at admission. Receiver-operating characteristic (ROC) curve analysis was performed. RESULTS: The level of PSP in infected infants was significantly higher than that in uninfected ones (median 11.3 vs. 7.5 ng/ml, respectively; p = 0.001). The ROC area under the curve was 0.69 [95 % confidence interval (CI) 0.59-0.80; p < 0.001] for PSP, 0.77 (95 % CI 0.66-0.87; p < 0.001) for PCT, 0.66 (95 % CI 0.55-0.77; p = 0.006) for CRP, 0.62 (0.51-0.73; p = 0.055) for sTREM-1 and 0.54 (0.41-0.67; p = 0.54) for MIF. PSP independently of PCT predicted EOS (p < 0.001), and the use of both markers concomitantly significantly increased the ability to diagnose EOS. A bioscore combining PSP (>9 ng/ml) and PCT (>2 ng/ml) was the best predictor of EOS (0.83; 95 % CI 0.74-0.93; p < 0.001) and resulted in a negative predictive value of 100 % and a positive predictive value of 71 %. CONCLUSIONS: In this prospective study, the diagnostic performance of PSP and PCT was superior to that of traditional markers and a combination bioscore improved the diagnosis of sepsis. Our findings suggest that PSP is a valuable biomarker in combination with PCT in EOS.
Resumo:
Objetivou-se aplicar o processo de relação interpessoal com mãe a de um recém-nascido que se encontrava internado em unidade neonatal, utilizando a Teoria da Relação Interpessoal de Joyce Travelbee. Estudo de caso, de natureza descritiva, desenvolvido em unidade de internação neonatal, em dezembro e janeiro de 2004. A Coleta de dados realizou-se mediante entrevista semi-estruturada, com interação pessoa-pessoa. Aplicou-se um instrumento contendo seis perguntas que revelaram possibilidades de ajuda mútua ante os problemas de saúde do filho. Buscou-se amenizar as angústias, dúvidas e medos, por meio da interação com a mãe. Constatou-se que a abordagem teórica foi relevante e serviu como guia para a enfermeira aplicar um cuidar mais ético e humano.
Resumo:
Patients with defective ectodysplasin A (EDA) have X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM#305100), a condition comprising hypotrichosis, inability to sweat, abnormal teeth, and frequent pulmonary infections. The XLHED dogs show the same clinical signs as humans with the disorder, including frequent respiratory infections that can be fatal. The respiratory disease in humans and dogs is thought to be due to the absence of tracheal and bronchial glands which are a vital part of the mucociliary clearance mechanism. In our XLHED model, the genetically missing EDA was replaced by postnatal intravenous administration of recombinant EDA resulting in long-term, durable corrective effect on adult, permanent dentition. After treatment with EDA, significant correction of the missing tracheal and bronchial glands was achieved in those dogs that received higher doses of EDA. Moreover, successful treatment resulted in the presence of esophageal glands, improved mucociliary clearance, and the absence of respiratory infection. These results demonstrate that a short-term treatment at a neonatal age with a recombinant protein can reverse a developmental disease and result in vastly improved quality of life.