916 resultados para Dynamic output feedback


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even minor changes in user activity can bring about significant energy savings within built space. Many building performance assessment methods have been developed, however these often disregard the impact of user behavior (i.e. the social, cultural and organizational aspects of the building). Building users currently have limited means of determining how sustainable they are, in context of the specific building structure and/or when compared to other users performing similar activities, it is therefore easy for users to dismiss their energy use. To support sustainability, buildings must be able to monitor energy use, identify areas of potential change in the context of user activity and provide contextually relevant information to facilitate persuasion management. If the building is able to provide users with detailed information about how specific user activity that is wasteful, this should provide considerable motivation to implement positive change. This paper proposes using a dynamic and temporal semantic model, to populate information within a model of persuasion, to manage user change. By semantically mapping a building, and linking this to persuasion management we suggest that: i) building energy use can be monitored and analyzed over time; ii) persuasive management can be facilitated to move user activity towards sustainability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present an active vision system which performs a surveillance task in everyday dynamic scenes. The system is based around simple, rapid motion processors and a control strategy which uses both position and velocity information. The surveillance task is defined in terms of two separate behavioral subsystems, saccade and smooth pursuit, which are demonstrated individually on the system. It is shown how these and other elementary responses to 2D motion can be built up into behavior sequences, and how judicious close cooperation between vision and control results in smooth transitions between the behaviors. These ideas are demonstrated by an implementation of a saccade to smooth pursuit surveillance system on a high-performance robotic hand/eye platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-layer techniques represent efficient means to enhance throughput and increase the transmission reliability of wireless communication systems. In this paper, a cross-layer design of aggressive adaptive modulation and coding (A-AMC), truncated automatic repeat request (T-ARQ), and user scheduling is proposed for multiuser multiple-input-multiple-output (MIMO) maximal ratio combining (MRC) systems, where the impacts of feedback delay (FD) and limited feedback (LF) on channel state information (CSI) are also considered. The A-AMC and T-ARQ mechanism selects the appropriate modulation and coding schemes (MCSs) to achieve higher spectral efficiency while satisfying the service requirement on the packet loss rate (PLR), profiting from the feasibility of using different MCSs to retransmit a packet, which is destined to a scheduled user selected to exploit multiuser diversity and enhance the system's performance in terms of both transmission efficiency and fairness. The system's performance is evaluated in terms of the average PLR, average spectral efficiency (ASE), outage probability, and average packet delay, which are derived in closed form, considering transmissions over Rayleigh-fading channels. Numerical results and comparisons are provided and show that A-AMC combined with T-ARQ yields higher spectral efficiency than the conventional scheme based on adaptive modulation and coding (AMC), while keeping the achieved PLR closer to the system's requirement and reducing delay. Furthermore, the effects of the number of ARQ retransmissions, numbers of transmit and receive antennas, normalized FD, and cardinality of the beamforming weight vector codebook are studied and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic soundtracking presents various practical and aesthetic challenges to composers working with games. This paper presents an implementation of a system addressing some of these challenges with an affectively-driven music generation algorithm based on a second order Markov-model. The system can respond in real-time to emotional trajectories derived from 2-dimensions of affect on the circumplex model (arousal and valence), which are mapped to five musical parameters. A transition matrix is employed to vary the generated output in continuous response to the affective state intended by the gameplay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.