908 resultados para Discount Cash-Flows
Resumo:
The ubiquity of the power law relationship between dQ/dt and Q for recession periods (-dQ/dt kQ(alpha); Q being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow process that is common to all real basins. It is commonly assumed that a basin, during recession events, functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit-Boussinesq (DB) aquifer, and with time different aquifer geometric conditions arise that give different values of alpha and k. The recently proposed alternative model, geomorphological recession flow model, however, suggests that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In this study we use data for several basins and compare the above two contrasting recession flow models in order to understand which of the above two factors dominates during recession periods in steep basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power law exponent alpha, (2) dynamic dQ/dt-Q relationship (characterized by k) and (3) recession timescale (time period for which a recession event lasts). Our observations suggest that neither drainage from phreatic aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of a and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as described by geomorphological recession flow model, possibly indicating that the ADN represents not just phreatic aquifers but the organization of various sub-surface storage systems within the basin. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared with the cross-stream height (h). The mass and diameter of the particles are set equal to 1 in the analysis without loss of generality. In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function chi proportional to (phi(ad) - phi)(-alpha), and a faster divergence of the derivativ rho(d chi/d rho) similar to (d chi/d phi), where rho and phi are the density and volume fraction, and phi(ad) is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). In the shallow limit, the stress reduces to a simplified Bagnold stress, where all components of the stress are proportional to (partial derivative u(x)/partial derivative y)(2), which is the cross-stream (y) derivative of the stream-wise (x) velocity. In the simplified equations for dense shallow flows, the inertial terms are neglected in the y momentum equation in the shallow limit because the are O(h/L) smaller than the divergence of the stress. The resulting model contains two equations, a mass conservation equations which reduces to a solenoidal condition on the velocity in the incompressible limit, and a stream-wise momentum equation which contains just one parameter B which is a combination of the Bagnold coefficients and their derivatives with respect to volume fraction. The leading-order dense shallow flow equations, as well as the first correction due to density variations, are analysed for two representative flows. The first is the development from a plug flow to a fully developed Bagnold profile for the flow down an inclined plane. The analysis shows that the flow development length is ((rho) over barh(3)/B) , where (rho) over bar is the mean density, and this length is numerically estimated from previous simulation results. The second example is the development of the boundary layer at the base of the flow when a plug flow (with a slip condition at the base) encounters a rough base, in the limit where the momentum boundary layer thickness is small compared with the flow height. Analytical solutions can be found only when the stream-wise velocity far from the surface varies as x(F), where x is the stream-wise distance from the start of the rough base and F is an exponent. The boundary layer thickness increases as (l(2)x)(1/3) for all values of F, where the length scale l = root 2B/(rho) over bar. The analysis reveals important differences between granular flows and the flows of Newtonian fluids. The Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients. The compressibility number (ratio of the variation in volume fraction and mean volume fraction) is independent of the flow velocity and layer height, and depends only on the volume fraction and Bagnold coefficients.
Resumo:
Heat transfer rate and pressure measurements were made upstream of surface pro-tuberances on a flat plate and a sharp cone subjected to hypersonic flow in a conventional shock tunnel. Heat flux was measured using platinum thin-film sensors deposited on macor substrate and the pressure measurements were made using fast acting piezoelectric sensors. A distinctive hot spot with highest heat flux was obtained near the foot of the protuberance due to heavy vortex activity in the recirculating region. Schlieren flow visualization was used to capture the shock structures and the separation distance ahead of the protrusions was quantitatively measured for varying protuberance heights. A computational analysis was conducted on the flat plate model using commercial computational fluid dynamics software and the obtained trends of heat flux and pressure were compared with the experimental observation. Experiments were also conducted by physically disturbing the laminar boundary layer to check its effect on the magnitude of the hot spot heat flux. In addition to air, argon was also used as test gas so that the Reynolds number can be varied. (C) 2014 AIP Publishing LLC.
Resumo:
A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013); Nath et al., Phys. Rev. E 88, 013010 (2013)] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a ``cold'' accretion flow at 3000Kis too ``hot'' in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.
Resumo:
Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of alpha-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of alpha-viscosity with alpha = 0.01-0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of alpha-viscosity is still being explored.
Resumo:
In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
利用基于分子模型的统计模拟方法--信息保存方法(IP)统计模拟了实验条件下微槽道气体流动,仔细讨论了用IP方法模拟长槽道稀薄气流时遇到的问题,并给出了解决的方法,即采取守恒形式的控制方程避免质量流量计算误差积累,并利用超松弛方法使收敛过程加速。将IP计算结果与压力分布和质量流量实验数据进行了比较。
Resumo:
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
Resumo:
A hierarchical model is proposed for the joint moments of the passive scalar dissipation and the velocity dissipation in fluid turbulence. This model predicts that the joint probability density function (PDF) of the dissipations is a bivariate log-Poisson. An analytical calculation of the scaling exponents of structure functions of the passive scalar is carried out for this hierarchical model, showing a good agreement with the results of direct numerical simulations and experiments.
Resumo:
Reliable turbulent channel flow databases at several Reynolds numbers have been established by large eddy simulation (LES), with two of them validated by comparing with typical direct numerical simulation (DNS) results. Furthermore, the statistics, such as velocity profile, turbulent intensities and shear stress, were obtained as well as the temporal and spatial structure of turbulent bursts. Based on the LES databases available, the conditional sampling methods are used to detect the structures of burst events. A method to deterimine the grouping parameter from the probability distribution function (pdf) curve of the time separation between ejection events is proposed to avoid the errors in detected results. And thus, the dependence of average burst period on thresholds is considerably weakened. Meanwhile, the average burst-to-bed area ratios are detected. It is found that the Reynolds number exhibits little effect on the burst period and burst-to-bed area ratio.
Resumo:
The fluid characteristics of gas flows in the micronozzle whose throat height is 20 μm were investigated by the direct simulation Monte Carlo (DSMC) method. In a series of cases, the dependence of mass flux on the pressure difference was gained, and the DSMC's results show good agreement with the experimental data. The comparison of mass flux and the Mach number contours between the DSMC and Navier-Stokes equations adding slip boundary also reveals quantitatively that the continuum model will be invalid gradually even when the average Knudsen number is smaller than 0.01. As one focus of the present paper, the phenomenon of the multiple expansion-compression waves that comes from the nozzle's divergent part was analyzed in detailed.