930 resultados para Digital marketing,Eye tracking,Web usability,User Interface
Resumo:
Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.
Resumo:
Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.
Resumo:
Nos últimos anos, tem sido evidente o crescimento exponencial das novas tecnologias e da utilização frequente de plataformas digitais. A tendência de mercado é a continuação deste aumento, contribuindo para que cada vez mais, surjam prestações de serviços e vendas de produtos no âmbito digital. As agências ocupam um lugar de destaque neste tipo de oferta, no entanto, as mais pequenas tem por vezes dificuldade em subsistir, devido à maioria do seu target serem pequenas e médias empresas. Tendo em conta esta realidade, foi criado o projeto Andamos, que consiste na criação de uma agência de marketing digital, adequada à realidade portuguesa, sendo o seu target micro, pequenas e médias empresas, mas que consiga criar uma estrutura de custos muito reduzidos, potenciando um negócio viável e lucrativo. Nesse sentido, foi desenvolvido uma descrição de projeto, que pretende detalhar o mercado através de benchmark, desenvolver o planeamento estratégico, o plano de marketing e comunicação e o modelo de negócio. Com o intuito de sustentar a validade do projeto, foi efetuado numa primeira fase um estudo, utilizando um questionário segundo o método Delphi, que demonstrou com base nas respostas apuradas, que existe necessidade no mercado, justificando a existência da Andamos. Numa segunda fase foi estudada a viabilidade do projeto, através de um planeamento financeiro, utilizando o modelo FINICIA, do IAPMEI. Por conseguinte, foi possível analisar os indicadores mais importantes, como a TIR, VAL, cash flow e payback period, entre outros, que suportaram a exequibilidade do negócio e a sua capacidade de gerar lucro.
Resumo:
Software updates are critical to the security of software systems and devices. Yet users often do not install them in a timely manner, leaving their devices open to security exploits. This research explored a re-design of automatic software updates on desktop and mobile devices to improve the uptake of updates through three studies. First using interviews, we studied users’ updating patterns and behaviors on desktop machines in a formative study. Second, we distilled these findings into the design of a low-fi prototype for desktops, and evaluated its efficacy for automating updates by means of a think-aloud study. Third, we investigated individual differences in update automation on Android devices using a large scale survey, and interviews. In this thesis, I present the findings of all three studies and provide evidence for how automatic updates can be better appropriated to fit users on both desktops and mobile devices. Additionally, I provide user interface design suggestions for software updates and outline recommendations for future work to improve the user experience of software updates.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Administração, 2016.
Resumo:
User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.
Resumo:
An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.
Resumo:
Esta investigación describe la situación de cómo Youtube se ha convertido a partir de sus estrategias y plan de mercadeo en la plataforma número uno en variedad de clips de películas, vídeos musicales, video de blogs, entre otros; llegando a popularizarse como una red social. Las redes sociales han desarrollado una nueva forma de comunicar y son una herramienta fundamental para la creación de conocimiento colectivo, es el caso de YouTube buscador de contenido audiovisual y red social que permite a millones de usuarios conectarse alrededor del mundo. Esta plataforma rompe las barreras culturales y de comunicación que anteriormente existían a falta de internet. En este sentido se pretende analizar a YouTube desde una perspectiva administrativa enfocada en el área de mercadeo.
Resumo:
Al giorno d'oggi, l'industry 4.0 è un movimento sempre più prominente che induce ad equipaggiare gli impianti industriali con avanzate infrastrutture tecnologiche digitali, le quali operano sinergicamente con l'impianto, al fine di controllare ed aumentare la produttività, monitorare e prevenire i futuri guasti, ed altro ancora. In questo ambito, gli utenti sono parte integrante della struttura produttiva, in cui ricoprono ruoli strategici e flessibili, collaborano fra loro e con le macchine, con l’obiettivo di affrontare e risolvere proattivamente una vasta gamma di problemi complessi. In particolare, la customer assistance nel settore industriale può certamente variare in relazione a molteplici elementi: il tipo di produzione e le caratteristiche del prodotto; l'organizzazione ed infrastruttura aziendale interna; la quantità di risorse disponibili che possono essere impiegate; il grado di importanza ricoperto dalla customer assistance nel settore industriale di riferimento; altri eventuali fattori appartenenti ad un dominio specifico. Per queste ragioni, si è cercato di individuare e categorizzare nel modo più accurato possibile, il lavoro svolto in questo elaborato ed il contesto nel quale è stato sviluppato. In questa tesi, viene descritta un'applicazione web per erogare assistenza al cliente in ambito di industria 4.0, attraverso il paradigma di ticketing o ticket di supporto/assistenza. Questa applicazione è integrata nel sistema Mentor, il quale è attivo già da anni nel settore industriale 4.0. Il progetto Mentor è una suite di applicazioni cloud-based creata dal gruppo Bucci Industries, una multinazionale attiva nell'industria e nell'automazione con sede a Faenza. In questo caso di studio, si presenta la progettazione ed implementazione della parte front-end del suddetto sistema di assistenza, il quale è integrato ed interconnesso con un paio di applicazioni tipiche di industria 4.0, presenti nella stessa suite di applicazioni.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
The University of Queensland, Australia has developed Fez, a world-leading user-interface and management system for Fedora-based institutional repositories, which bridges the gap between a repository and users. Christiaan Kortekaas, Andrew Bennett and Keith Webster will review this open source software that gives institutions the power to create a comprehensive repository solution without the hassle..
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Graphical user interfaces (GUIs) are critical components of todays software. Given their increased relevance, correctness and usability of GUIs are becoming essential. This paper describes the latest results in the development of our tool to reverse engineer the GUI layer of interactive computing systems. We use static analysis techniques to generate models of the user interface behaviour from source code. Models help in graphical user interface inspection by allowing designers to concentrate on its more important aspects. One particularly type of model that the tool is able to generate is state machines. The paper shows how graph theory can be useful when applied to these models. A number of metrics and algorithms are used in the analysis of aspects of the user interface's quality. The ultimate goal of the tool is to enable analysis of interactive system through GUIs source code inspection.
Resumo:
Graphical user interfaces (GUIs) are critical components of today's open source software. Given their increased relevance, the correctness and usability of GUIs are becoming essential. This paper describes the latest results in the development of our tool to reverse engineer the GUI layer of interactive computing open source systems. We use static analysis techniques to generate models of the user interface behavior from source code. Models help in graphical user interface inspection by allowing designers to concentrate on its more important aspects. One particular type of model that the tool is able to generate is state machines. The paper shows how graph theory can be useful when applied to these models. A number of metrics and algorithms are used in the analysis of aspects of the user interface's quality. The ultimate goal of the tool is to enable analysis of interactive system through GUIs source code inspection.
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.