987 resultados para Diatoms, Fossil.
Climate refugia: joint inference from fossil records, species distribution models and phylogeography
Resumo:
Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.
Resumo:
Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3–4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2–3 μgC m−3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m−3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2–3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.
Resumo:
During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.
Resumo:
Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.
Resumo:
Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
Sediment cores spanning the last two centuries were taken in Hagelseewli, a high-elevation lake in the Swiss Alps. Contiguous 0.5 cm samples were analysed for biological remains, including diatoms, chironomids, cladocera, chrysophyte cysts, and fossil pigments. In addition, sedimentological and geochemical variables such as loss-on-ignition, total carbon, nitrogen, sulphur, grain-size and magnetic mineralogy were determined. The results of these analyses were compared to a long instrumental air temperature record that was adapted to the elevation of Hagelseewli by applying mean monthly lapse rates. During much of the time, the lake is in the shadow of a high cliff to the south, so that the lake is ice-covered during much of the year and thus decoupled from climatic forcing. Lake biology is therefore influenced more by the duration of ice-cover than by direct temperature effects during the short open-water season. Long periods of ice-cover result in anoxic water conditions and dissolution of authigenic calcites, leading to carbonate-free sediments. The diversity of chironomid and cladoceran assemblages is extremely low, whereas that of diatom and chrysophyte cyst assemblages is much higher. Weak correlations were observed between the diatom and chrysophyte cyst assemblages on the one hand and summer or autumn air temperatures on the other, but the proportion of variance explained is low, so that air temperature alone cannot account for the degree of variation observed in the paleolimnological record. Analyses of mineral magnetic parameters, spheroidal carbonaceous particles and lead suggest that atmospheric pollution has had a significant effect on the sediments of Hagelseewli, but little effect on the water quality as reflected in the lake biota.
Resumo:
Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.
Resumo:
In the first season of drilling, the Cape Roberts Project (CRP) recovered one drillcore (CRP-l) from Roberts Ridge in western McMurdo Sound, Ross Sea, Antarctica Diatom biostratigraphy places the upper six lithostratigraphic units (Units 1.1, 2.1, 2.2, 2.3, 3.1, and 4.1) of CRP-l (0.0 to 43.15 mbsf) within the Quaternary. Both non-marine and marine Quaternary diatoms occur in variable abundance in the Quaternary interval of CRP- 1 Biostratigraphic data resolve two Quaternary time slices or events within CRP-1. Marine diatom assemblages in Units 4.1 and 3.1 represent sedimentation within the diatom Actinocyclus ingens Zone (1.35 to 0.66 Ma). Further refinement of the age of Unit 3.l places deposition in the interval 1.15 to 0.75 Ma based on the common occurrence of Thalassiosira elliptipora and correlation to the Southern Ocean acme of this taxon The absence of ActiActinocyclus ingens and the presence ot Thalassiosira antarctica in Unit 2.2 require a younger zonal assignment for this interval, within the diatom Thalassiosira lentiginosa Zone (0.66 to 0.0 Ma). A new diatom species. Rouxia leventerae, is described from marine assemblages of Units 2.2, 2.3, 3.1, and 4.l. Lithostratigraphic Unit 3.1 (33.82 to 31.89 mbsf) is a bryozoan-dominated skeletal-carbonate facies. Low abundance of Fragilariopsis curta and Fragilariopsis cylindrus within this unit combined with the relatively high abundance of species associated with open water indicates deposition in waters that remained ice free for much or all of the year Diatom assemblages suggest carbonate deposition in Unit 3.1 is linked to a significant early Pleistocene event in McMurdo Sound, when elevated surface-water temperatures inhibited the formation of sea ice.
Resumo:
During Ocean Drilling Program (ODP) Leg 177, seven sites were drilled aligned on a transect across the Antarctic Circumpolar Current in the Atlantic sector of the Southern Ocean. The primary scientific objective of Leg 177 was the study of the Cenozoic paleoceanographic and paleoclimatic history of the southern high latitudes and its relationship with the Antarctic cryosphere development. Of special emphasis was the recovery of Pliocene-Pleistocene sections, allowing paleoceanographic studies at millennial or higher time resolution, and the establishment of refined biostratigraphic zonations tied to the geomagnetic polarity record and stable isotope records. At most sites, multiple holes were drilled to ensure complete recovery of the section. A description of the recovered sections and the construction of a multihole splice for the establishment of a continuous composite is presented in the Leg 177 Initial Reports volume for each of the sites (Gersonde, Hodell, Blum, et al., 1999). Here we present the relative abundance pattern and the stratigraphic ranges of diatom taxa encountered from shore-based light microscope studies completed on the Pliocene-Pleistocene sequences from six of the drilled sites (Sites 1089-1094). No shore-based diatom studies have been conducted on the Pliocene-Pleistocene sediments obtained at Site 1088, located on the northern crest of the Agulhas Ridge, because of the scattered occurrence and poor preservation of diatoms in these sections (Shipboard Scientific Party, 1999b). The data included in our report present the baseline of a diatom biostratigraphic study of Zielinski and Gersonde (2002), which (1) includes a refinement of the southern high-latitude Pliocene-Pleistocene diatom zonation, in particular for the middle and late Pleistocene, and (2) presents a biostratigraphic framework for the establishment of age models of the recovered sediment sections. Zielinski and Gersonde (2002) correlated the diatom ranges with the geomagnetic polarity record established shipboard (Sites 1090 and 1092) (Shipboard Scientific Party, 1999c, 1999d) and on shore (Sites 1089, 1091, 1093, and 1094) by Channell and Stoner (2002). The Pliocene-Pleistocene diatom zonation proposed by Zielinski and Gersonde (2002) relies on a diatom zonation from Gersonde and Bárcena (1998) for the northern belt of the Southern Ocean. Because of latitudinal differentiation of sea-surface temperature, nutrients, and salinity between Antarctic and Subantarctic/subtropical water masses, the Pliocene-Pleistocene stratigraphic marker diatoms are not uniformly distributed in the Southern Ocean (Fenner, 1991; Gersonde and Bárcena, 1998). As a consequence, Zielinski and Gersonde (2002) propose two diatom zonations for application in the Antarctic Zone south of the Polar Front (Southern Zonation, Sites 1094 and 1093) and the area encompassing the Polar Front Zone (PFZ) and the Subantarctic Zone (Northern Zonation, Sites 1089-1092). This accounts especially for the Pleistocene zonation where Hemidiscus karstenii, whose first abundant occurrence datum and last occurrence datum defines the subzonation of the northern Thalassiosira lentiginosa Zone, occurs only sporadically in the cold-water realm south of the PFZ and thus is not applicable in sections from this area. However, newly established marker species assigned to the genus Rouxia (Rouxia leventerae and Rouxia constricta) are more related to cold-water environments and allow a refinement of the Pleistocene stratigraphic zonation for the southern cold areas. A study relying on quantitative counts of both Rouxia species confirms the utility of these stratigraphic markers for the identification of sequences attributed to marine isotope Stages 6 and 8 in the southern Southern Ocean (Zielinski et al., 2002).