898 resultados para Diabète de Type 1
Resumo:
T cells are the key players in the development of type 1 diabetes (T1D), mediating autoimmune reactions leading to the destruction of insulin producing beta cells in the islets. We aimed to analyze the role of different T-cell subtypes in the autoimmunity and pathogenesis of T1D. The frequency of islet antigen-specific (GAD65-, proinsulin-, and insulin-specific) CD4+ T cells was investigated in vitro in T1D patients, at-risk individuals (diabetes-associated autoantibody positive), and in controls, using MHC class II tetramers. An overall higher frequency of CD4+ T-cells recognizing the GAD65 555−567 peptide was detected in at-risk individuals. In addition, increased CD4+ T-cell responses to the same GAD65 epitope displaying a memory phenotype were observed in at-risk and diabetic children, which demonstrate a previous encounter with the antigen in vivo. Avidity and phenotypic differences were also observed among CD4+ T-cell clones induced by distinct doses of GAD65 autoantigen. T-cell clones generated at the lowest peptide dose displayed the highest avidity and expressed more frequently the TCR Vβ5.1 chain than low-avidity T cells. These findings raise attention to the antigen dose when investigating the diversity of antigen-specific T cells. Furthermore, an increased regulatory response during the preclinical phase of T1D was also found in genetically at-risk children. Higher frequencies of regulatory T (Treg) cells (CD4+CD25high HLA-DR-/CD69-) and natural killer T (NKT) cells (CD161+Vbeta11+) were observed in children with multiple autoantibodies compared to autoantibody-negative controls. Taken together, these data showed increased frequency of islet-specific CD4+ T-cells, especially to the GAD65 555-567 epitope, and Treg and NKT cell upregulation in children at-risk for T1D, suggesting their importance in T1D pathogenesis
Resumo:
Dietary and microbial factors are thought to contribute to the rapidly increasing prevalence of T1D in many countries worldwide. The impact of these factors on immune regulation and diabetes development in non-obese diabetic (NOD) mice are investigated in this thesis. Diabetes can be prevented in NOD mice through dietary manipulation. Diet affects the composition of intestinal microbiota, which may subsequently influence intestinal immune homeostasis. However, the specific effects of anti-diabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. The research presented herein demonstrates that newly weaned NOD mice suffer from a mild level of colitis, which shifts the colonic immune cell balance towards a proinflammatory status. Several aberrations can also be observed in the peritoneal B cells of NOD mice; an increase in activation marker expression, increased trafficking to the pancreatic lymph nodes and significantly higher antigen presenting cell (APC) efficiency towards insulin-specific T cells. A shift towards inflammation is likewise observed in the colon of germ-free NOD mice, but signs of peritoneal B cell activation are lacking in these mice. Remarkably, most of the abnormalities in the colon, peritoneal macrophages and the peritoneal B cell APC activity of NOD mice are abrogated when NOD mice are maintained on a diabetes-preventive, soy-based diet (ProSobee) from the time of weaning. Dietary and microbial factors hence have a significant impact on colonic immune regulation and peritoneal B cell activation and it is suggested that these factors influence diabetes development in NOD mice.
Resumo:
The authors previously reported the construction of a glycoprotein E-deleted (gE-) mutant of bovine herpesvirus type 1.2a (BHV-1.2a). This mutant, 265gE-, was designed as a vaccinal strain for differential vaccines, allowing the distinction between vaccinated and naturally infected cattle. In order to determine the safety and efficacy of this candidate vaccine virus, a group of calves was inoculated with 265gE-. The virus was detected in secretions of inoculated calves to lower titres and for a shorter period than the parental virus inoculated in control calves. Twenty one days after inoculation, the calves were challenged with the wild type parental virus. Only mild signs of infection were detected on vaccinated calves, whereas non-vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Six months after vaccination, both vaccinated and control groups were subjected to reactivation of potentially latent virus. The mutant 265gE- could not be reactivated from vaccinated calves. The clinical signs observed, following the reactivation of the parental virus, were again much milder on vaccinated than on non-vaccinated calves. Moreover, parental virus shedding was considerably reduced on vaccinated calves at reactivation. In view of its attenuation, immunogenicity and protective effect upon challenge and reactivation with a virulent BHV-1, the mutant 265gE- was shown to be suitable for use as a BHV-1 differential vaccine virus.
Resumo:
The aim of this thesis was to develop new herpes simplex virus (HSV) vectors for gene therapy of experimental autoimmune encephalomyelitis (EAE), the principal model of multiple sclerosis (MS), and to study the pathogenesis of wild-type HSV-1 and HSV-1 vectors in vivo. By introducing potential immunomodulatory factors into mice with EAE we strived to develop therapies and possibly find molecules improving recovery from EAE. We aimed at altering the immune response by inducing favorable Th2-type cytokines, thus shifting the immune response from a Th1- or a Th17-response. Our HSV vector expressing interleukin (IL)-5 modulated the cytokine responses, decreased inflammation and alleviated EAE. The use of a novel method, bacterial artificial chromosome (BAC), for engineering recombinant HSV facilitated the construction of a new vector expressing leukemia inhibitory factor (LIF). LIF is a neurotropic cytokine with broad functions in the central nervous system (CNS). LIF promotes oligodendrocyte maturation and decreases demyelination and oligodendrocyte loss. The BAC-derived HSV-LIF vector alleviated the clinical symptoms, induced a higher number of oligodendrocytes and modulated T cell responses. By administering HSV via different infection routes, e.g. peripherally via the nose or eye, or intracranially to the brain, the effect of the immune response on HSV spread at different points of the natural infection route was studied. The intranasal infection was an effective delivery route of HSV to the trigeminal ganglion and CNS, whereas corneal infection displayed limited spread. The corneal and intranasal infections induced different peripheral immune responses, which might explain the observed differences in viral spread.
Resumo:
Canine oral papillomavirus (COPV), also known as Canine Papillomavirus type 1 (CPV1), induces papillomas at the mucous membranes of the oral cavity and at the haired skin of dogs. The classification of Papillomavirus (PV) types is based on the L1 capsid protein and nucleotide sequence; so far, 14 CPV types have been described in several countries, but the molecular characterization of CPV in Brazil is lacking. This study investigated the presence of the PV in seven papillomas from four mixed breed dogs from Londrina/PR, Southern Brazil, by partial sequencing of the L1 gene. Seven exophytic cutaneous lesions were surgically removed and processed for histopathological and molecular characterization. Histopathology confirmed the lesions as viral papillomas due to typical histological features. Polymerase Chain Reaction (PCR) assay using the FAP59 and FAP64 primers targeted the L1 gene followed by sequence analysis of the amplicons identified CPV1 in all evaluated papilloma samples. This study represents the first description of CPV1 DNA associated with canine papillomatosis in Brazil.
Resumo:
In order to analyze the different parameters used in the interpretation of C-peptide response in a functional test, we compared a group of 26 type 1 diabetics aged 21.1 ± 8.2 years, with a diabetes duration of 7.9 ± 6.7 months, with a group of 24 non-diabetic subjects aged 25.0 ± 4.4 years. A standard mixed meal of 317 kcal was used as a stimulus. Blood sampling for C-peptide determinations was performed at regular intervals. Although all the studied C-peptide variables were significantly lower in the diabetic group (P<0.0001), some overlapping of parameters was observed between the two groups. The highest degree of overlapping was found for basal value (BV) (30.8%) and percent increase (42.31%), and the lowest for incremental area, absolute increase, peak value (PV) (3.8%), and total area (7.7%) (c2 = 31.6, P<0.0001). We did not observe a definite pattern in the time of maximum response among the 21 diabetics who showed an increase in C-peptide levels after the stimulus. In this group, however, there was a highly significant number of late responses (120 min) (c2 = 5.7, P<0.002). Although BV showed a significant correlation with PV (rS = 0.95, P<0.0001), the basal levels of C-peptide did not differentiate the groups with and without response to the stimulus. We conclude that the diabetic group studied showed delayed and reduced C-peptide responses, and that the functional test can be an important tool for the evaluation of residual ß cell function.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
To establish the incidence of type 1 diabetes among children (infants to 14 years of age) in the city of Passo Fundo, Rio Grande do Sul, Brazil (population under 15 years = 50,098), during the period of January to December 1996, a retrospective and prospective population-based registry was established, using physician reports of newly diagnosed patients under 15 years of age with type 1 diabetes as the primary source of case identification. Primary and nursery schools and a general call through the media (newspapers, radio and television) was the secondary source. Data were calculated according to the methods recommended by the WHO (1990). Six new cases were identified. Case ascertainment was estimated at 100%. The incidence of type 1 diabetes in the year 1996 was 12/100,000 inhabitants. These data indicate that the incidence of childhood type 1 diabetes in a subtropical region in the Southern part of Brazil was similar to that observed in developed countries throughout the world. The inability to demonstrate the North-South gradient is probably due to the European origin of inhabitants of the city.
Resumo:
Type 1 diabetes, as an autoimmune disease, presents several islet cell-specific autoantibodies such as islet cell antibody (ICA), anti-insulin, anti-glutamic acid decarboxylase (GAD) and the antibody (Ab) against tyrosine phosphatase (PTP)-like protein known as ICA-512 (IA-2). In order to determine the frequency of the anti-GAD and anti-IA-2 autoantibodies in Brazilian type 1 diabetes patients we studied 35 diabetes mellitus (DM) type 1 patients with recent-onset disease (£12 months) and 37 type 1 diabetes patients with long-duration diabetes (>12 months) who were compared to 12 children with normal fasting glucose. Anti-GAD65 and anti-IA-2 autoantibodies were detected with commercial immunoprecipitation assays. The frequency of positive results in recent-onset DM type 1 patients was 80.0% for GADAb, 62.9% for IA-2Ab and 82.9% for GADAb and/or IA-2Ab. The long-duration type 1 diabetes subjects presented frequencies of 54.1% for GADAb and IA-2Ab, and 67.5% for GAD and/or IA-2 antibodies. The control group showed no positive cases. Anti-GAD and IA-2 assays showed a high frequency of positivity in these Brazilian type 1 diabetes patients, who presented the same prevalence as a Caucasian population.
Resumo:
To determine the influence of residual ß-cell function on retinopathy and microalbuminuria we measured basal C-peptide in 50 type 1 diabetic outpatients aged 24.96 ± 7.14 years, with a duration of diabetes of 9.1 ± 6.2 years. Forty-three patients (86%) with low C-peptide (<0.74 ng/ml) had longer duration of diabetes than 7 patients (14%) with high C-peptide (³0.74 ng/ml) (9 (2-34) vs 3 (1-10) years, P = 0.01) and a tendency to high glycated hemoglobin (HBA1) (8.8 (6-17.9) vs 7.7 (6.9-8.7)%, P = 0.08). Nine patients (18%) had microalbuminuria (two out of three overnight urine samples with an albumin excretion rate (AER) ³20 and <200 µg/min) and 13 (26%) had background retinopathy. No association was found between low C-peptide, microalbuminuria and retinopathy and no difference in basal C-peptide was observed between microalbuminuric and normoalbuminuric patients (0.4 ± 0.5 vs 0.19 ± 0.22 ng/ml, P = 0.61) and between patients with or without retinopathy (0.4 ± 0.6 vs 0.2 ± 0.3 ng/ml, P = 0.43). Multiple regression analysis showed that duration of diabetes (r = 0.30, r2 = 0.09, P = 0.031) followed by HBA1 (r = 0.41, r2 = 0.17, P = 0.01) influenced basal C-peptide, and this duration of diabetes was the only variable affecting AER (r = 0.40, r2 = 0.16, P = 0.004). In our sample of type 1 diabetic patients residual ß-cell function was not associated with microalbuminuria or retinopathy.
Resumo:
Tamm-Horsfall glycoprotein (THP) contains manno-oligosaccharides that are recognized by type 1 fimbriae (F1) of Escherichia coli. In the present study, we examined the in vivo phagocytic activity of mouse peritoneal macrophages after treatment of bacteria with THP. At low THP concentrations (12.5 µg/ml and 50 µg/ml) no significant difference was observed in the phagocytosis of E. coli F1+. However, at high THP concentrations (500 µg/ml and 1250 µg/ml) we obtained a reduction of bacterial phagocytosis by mouse peritoneal macrophages.
Resumo:
We tested the correlation of the albumin-to-creatinine ratio (A/C) in an early-morning urine sample, measured with a commercial kit (DCA 2000®), with the conventional immunoturbidimetric determination in the laboratory and with overnight albumin excretion rate (reference method). Fifty-five type 1 diabetic adolescents had their first-morning urine collected on the 1st and 8th day of the period. Urinary albumin and creatinine were determined immediately using the DCA 2000® kit. Samples were also stored for laboratory analysis. To evaluate the correlation between early-morning urinary A/C ratio and overnight albumin excretion rate, 16 subjects had a timed overnight urine collection. A/C ratios determined with the DCA 2000® kit and by the laboratory method were 13.1 ± 20.5 and 20.4 ± 46.3 mg/g, respectively. A/C results by both methods proved to be strongly correlated (r = 0.98, P<0.001). DCA 2000®-determined A/C showed 50% sensitivity and 100% specificity when compared to the reference method. Spot urinary A/C of the subset of 16 subjects significantly correlated with their overnight albumin excretion rate (r = 0.98, P<0.001). Intraindividual variation ranged from 17 to 32% and from 9 to 63% for A/C and overnight albumin excretion rate, respectively. In conclusion, an early-morning specimen should be used instead of timed overnight urine and the A/C ratio is an accurate, reliable and easily determined parameter for the screening of diabetic nephropathy. Immediate measurement of the A/C ratio is feasible using the DCA 2000® kit. Intraindividual variability indicates the need for repeated determinations to confirm microalbuminuria and the diagnosis of incipient diabetic nephropathy.