897 resultados para Decision tree method
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
Background: Sepsis can lead to multiple organ failure and death. Timely and appropriate treatment can reduce in-hospital mortality and morbidity. Objectives: To determine the clinical effectiveness and cost-effectiveness of three tests [LightCycler SeptiFast Test MGRADE® (Roche Diagnostics, Risch-Rotkreuz, Switzerland); SepsiTest™ (Molzym Molecular Diagnostics, Bremen, Germany); and the IRIDICA BAC BSI assay (Abbott Diagnostics, Lake Forest, IL, USA)] for the rapid identification of bloodstream bacteria and fungi in patients with suspected sepsis compared with standard practice (blood culture with or without matrix-absorbed laser desorption/ionisation time-offlight mass spectrometry). Data sources: Thirteen electronic databases (including MEDLINE, EMBASE and The Cochrane Library) were searched from January 2006 to May 2015 and supplemented by hand-searching relevant articles. Review methods: A systematic review and meta-analysis of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. A decision tree was used to estimate the costs and quality-adjusted life-years (QALYs) associated with each test; all other parameters were estimated from published sources. The model was populated with evidence from the systematic review or individual studies, if this was considered more appropriate (base case 1). In a secondary analysis, estimates (based on experience and opinion) from seven clinicians regarding the benefits of earlier test results were sought (base case 2). A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Scenario analyses were used to assess uncertainty. Results: For the review of diagnostic test accuracy, 62 studies of varying methodological quality were included. A meta-analysis of 54 studies comparing SeptiFast with blood culture found that SeptiFast had an estimated summary specificity of 0.86 [95% credible interval (CrI) 0.84 to 0.89] and sensitivity of 0.65 (95% CrI 0.60 to 0.71). Four studies comparing SepsiTest with blood culture found that SepsiTest had an estimated summary specificity of 0.86 (95% CrI 0.78 to 0.92) and sensitivity of 0.48 (95% CrI 0.21 to 0.74), and four studies comparing IRIDICA with blood culture found that IRIDICA had an estimated summary specificity of 0.84 (95% CrI 0.71 to 0.92) and sensitivity of 0.81 (95% CrI 0.69 to 0.90). Owing to the deficiencies in study quality for all interventions, diagnostic accuracy data should be treated with caution. No randomised clinical trial evidence was identified that indicated that any of the tests significantly improved key patient outcomes, such as mortality or duration in an intensive care unit or hospital. Base case 1 estimated that none of the three tests provided a benefit to patients compared with standard practice and thus all tests were dominated. In contrast, in base case 2 it was estimated that all cost per QALY-gained values were below £20,000; the IRIDICA BAC BSI assay had the highest estimated incremental net benefit, but results from base case 2 should be treated with caution as these are not evidence based. Limitations: Robust data to accurately assess the clinical effectiveness and cost-effectiveness of the interventions are currently unavailable. Conclusions: The clinical effectiveness and cost-effectiveness of the interventions cannot be reliably determined with the current evidence base. Appropriate studies, which allow information from the tests to be implemented in clinical practice, are required.
Resumo:
This paper presents a multi-class AdaBoost based on incorporating an ensemble of binary AdaBoosts which is organized as Binary Decision Tree (BDT). It is proved that binary AdaBoost is extremely successful in producing accurate classification but it does not perform very well for multi-class problems. To avoid this performance degradation, the multi-class problem is divided into a number of binary problems and binary AdaBoost classifiers are invoked to solve these classification problems. This approach is tested with a dataset consisting of 6500 binary images of traffic signs. Haar-like features of these images are computed and the multi-class AdaBoost classifier is invoked to classify them. A classification rate of 96.7% and 95.7% is achieved for the traffic sign boarders and pictograms, respectively. The proposed approach is also evaluated using a number of standard datasets such as Iris, Wine, Yeast, etc. The performance of the proposed BDT classifier is quite high as compared with the state of the art and it converges very fast to a solution which indicates it as a reliable classifier.
Resumo:
En los procesos de mantenimiento y rehabilitación de pavimentos, se deben definir los objetivos, bien sea para realizar unas reparaciones superficiales sobre daños generados por el agua como consecuencia de fallas en los drenajes, o bien realizar una intervención sobre la estructura buscando recuperarla a sus condiciones de diseño originales, la cual se realiza con el proceso de reciclaje el cual tiene en cuenta las características físico-químicas de los materiales existentes los cuales se consideran sufrieron el adecuado proceso que les permitió hacer parte de la estructura. Existiendo cuatro tipos de reciclaje de los cuales se realiza una descripción general de cada proceso, el presente trabajo se concentra en el análisis técnico – económico del proceso ―In situ‖ en frio, método utilizado en la rehabilitación de la vía Sopetrán - Puente de Occidente, en el Departamento de Antioquia, en una longitud de 13 Km. El presente estudio se realiza verificando el cumplimiento de las especificaciones a nivel nacional que para estos procesos estableció el Instituto Nacional de Vías (INVIAS) y verificando el cumplimiento de las normas IDU ET-2005. El reciclaje ―in situ‖ en frio tiene ventajas ecológicas (no necesita afectar las eventuales fuentes de materiales de la zona), económico (bajos costos comparados con reconstrucción) y técnico (los equipos para este proceso han presentado importantes avances tecnológicos) lo cual permitió su aplicación en la vía mencionada, lo cual con la adición de un agente estabilizador (cemento para el presente estudio) permite recuperar las condiciones iniciales de diseño de la estructura intervenida. El árbol de decisiones es una herramienta utilizada para el análisis y selección de la mejor opción de estructura a realizar teniendo en cuenta calidad y costos. El presente trabajo termina con un análisis detallado de las condiciones existentes, revisión de las diferentes opciones de intervención y el estudio económico de las diferentes alternativas de estructura de pavimento para la rehabilitación de la vía referida.
Resumo:
An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.
Resumo:
Este trabajo se enfoca en la implementación de un detector de arrecife de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (Autonomous Underwater Vehicle, AUV, por sus siglas en inglés). Una detección rápida de la presencia de coral asegura la estabilización del AUV frente al arrecife en el menor tiempo posible, evitando colisiones con el coral. La detección de coral se hace en una imagen que captura la escena que percibe la cámara del AUV. Se realiza una clasificación píxel por píxel entre dos clases: arrecife de coral y el plano de fondo que no es coral. A cada píxel de la imagen se le asigna un vector característico, el mismo que se genera mediante el uso de filtros Gabor Wavelets. Éstos son implementados en C++ y la librería OpenCV. Los vectores característicos son clasificados a través de nueve algoritmos de máquinas de aprendizaje. El desempeño de cada algoritmo se compara mediante la precisión y el tiempo de ejecución. El algoritmo de Árboles de Decisión resultó ser el más rápido y preciso de entre todos los algoritmos. Se creó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba).
Resumo:
Technologies such as automobiles or mobile phones allow us to perform beyond our physical capabilities and travel faster or communicate over long distances. Technologies such as computers and calculators can also help us perform beyond our mental capabilities by storing and manipulating information that we would be unable to process or remember. In recent years there has been a growing interest in assistive technology for cognition (ATC) which can help people compensate for cognitive impairments. The aim of this thesis was to investigate ATC for memory to help people with memory difficulties which impacts independent functioning during everyday life. Chapter one argues that using both neuropsychological and human computing interaction theory and approaches is crucial when developing and researching ATC. Chapter two describes a systematic review and meta-analysis of studies which tested technology to aid memory for groups with ABI, stroke or degenerative disease. Good evidence was found supporting the efficacy of prompting devices which remind the user about a future intention at a set time. Chapter three looks at the prevalence of technologies and memory aids in current use by people with ABI and dementia and the factors that predicted this use. Pre-morbid use of technology, current use of non-tech aids and strategies and age (ABI group only) were the best predictors of this use. Based on the results, chapter four focuses on mobile phone based reminders for people with ABI. Focus groups were held with people with memory impairments after ABI and ABI caregivers (N=12) which discussed the barriers to uptake of mobile phone based reminding. Thematic analysis revealed six key themes that impact uptake of reminder apps; Perceived Need, Social Acceptability, Experience/Expectation, Desired Content and Functions, Cognitive Accessibility and Sensory/Motor Accessibility. The Perceived need theme described the difficulties with insight, motivation and memory which can prevent people from initially setting reminders on a smartphone. Chapter five investigates the efficacy and acceptability of unsolicited prompts (UPs) from a smartphone app (ForgetMeNot) to encourage people with ABI to set reminders. A single-case experimental design study evaluated use of the app over four weeks by three people with severe ABI living in a post-acute rehabilitation hospital. When six UPs were presented through the day from ForgetMeNot, daily reminder-setting and daily memory task completion increased compared to when using the app without the UPs. Chapter six investigates another barrier from chapter 4 – cognitive and sensory accessibility. A study is reported which shows that an app with ‘decision tree’ interface design (ApplTree) leads to more accurate reminder setting performance with no compromise of speed or independence (amount of guidance required) for people with ABI (n=14) compared to a calendar based interface. Chapter seven investigates the efficacy of a wearable reminding device (smartwatch) as a tool for delivering reminders set on a smartphone. Four community dwelling participants with memory difficulties following ABI were included in an ABA single case experimental design study. Three of the participants successfully used the smartwatch throughout the intervention weeks and these participants gave positive usability ratings. Two participants showed improved memory performance when using the smartwatch and all participants had marked decline in memory performance when the technology was removed. Chapter eight is a discussion which highlights the implications of these results for clinicians, researchers and designers.
Resumo:
As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performance in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DCA, including antigen multiplier and moving time windows, are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with contant-sized detectors is not applicable to the data set. And the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Administração, 2016.
Resumo:
Field lab: Entrepreneurial and innovative ventures
Resumo:
Layer mortality due to heat stress is an important economic loss for the producer. The aim of this study was to determine the mortality pattern of layers reared in the region of Bastos, SP, Brazil, according to external environment and bird age. Data mining technique were used based on monthly mortality records of hens in production, 135 poultry houses, from January 2004 to August 2008. The external environment was characterized according maximum and minimum temperatures, obtained monthly at the meteorological station CATI in the city of Tupa, SP, Brazil. Mortality was classified as normal (<= 1.2%) or high (> 1.2%), considering the mortality limits mentioned in literature. Data mining technique produced a decision tree with nine levels and 23 leaves, with 62.6% of overall accuracy. The hit rate for the High class was 64.1% and 59.9% for Normal class. The decision tree allowed finding a pattern in the mortality data, generating a model for estimating mortality based on the thermal environment and bird age.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2016.
Resumo:
Background: Rotavirus diarrhea is one of the most important causes of death among under-five children. Anti-rotavirus vaccination of these children may have a reducing effect on the disease. Objectives: this study is intended to contribute to health policy-makers of the country about the optimal decision and policy development in this area, by performing cost-effectiveness and cost-utility analysis on anti-rotavirus vaccination for under-5 children. Patients and Methods: A cost-effectiveness analysis was performed using a decision tree model to analyze rotavirus vaccination, which was compared with no vaccination with Iran’s ministry of health perspective in a 5-year time horizon. Epidemiological data were collected from published and unpublished sources. Four different assumptions were considered to the extent of the disease episode. To analyze costs, the costs of implementing the vaccination program were calculated with 98% coverage and the cost of USD 7 per dose. Medical and social costs of the disease were evaluated by sampling patients with rotavirus diarrhea, and sensitivity analysis was also performed for different episode rates and vaccine price per dose. Results: For the most optimistic assumption for the episode of illness (10.2 per year), the cost per DALY averted is 12,760 and 7,404 for RotaTeq and Rotarix vaccines, respectively, while assuming the episode of illness is 300%, they will be equal to 2,395 and 354, respectively, which will be highly cost-effective. Number of life-years gained is equal to 3,533 years. Conclusions: Assuming that the illness episodes are 100% and 300% for Rotarix and 300% for Rota Teq, the ratio of cost per DALY averted is highly cost-effective, based on the threshold of the world health organization (< 1 GDP per capita = 4526 USD). The implementation of a national rotavirus vaccination program is suggested.
Resumo:
The current Amazon landscape consists of heterogeneous mosaics formed by interactions between the original forest and productive activities. Recognizing and quantifying the characteristics of these landscapes is essential for understanding agricultural production chains, assessing the impact of policies, and in planning future actions. Our main objective was to construct the regionalization of agricultural production for Rondônia State (Brazilian Amazon) at the municipal level. We adopted a decision tree approach, using land use maps derived from remote sensing data (PRODES and TerraClass) combined with socioeconomic data. The decision trees allowed us to allocate municipalities to one of five agricultural production systems: (i) coexistence of livestock production and intensive agriculture; (ii) semi-intensive beef and milk production; (iii) semi-intensive beef production; (iv) intensive beef and milk production, and; (v) intensive beef production. These production systems are, respectively, linked to mechanized agriculture (i), traditional cattle farming with low management, with (ii) or without (iii) a significant presence of dairy farming, and to more intensive livestock farming with (iv) or without (v) a significant presence of dairy farming. The municipalities and associated production systems were then characterized using a wide variety of quantitative metrics grouped into four dimensions: (i) agricultural production; (ii) economics; (iii) territorial configuration, and; (iv) social characteristics. We found that production systems linked to mechanized agriculture predominate in the south of the state, while intensive farming is mainly found in the center of the state. Semi-intensive livestock farming is mainly located close to the southwest frontier and in the north of the state, where human occupation of the territory is not fully consolidated. This distributional pattern reflects the origins of the agricultural production system of Rondônia. Moreover, the characterization of the production systems provides insights into the pattern of occupation of the Amazon and the socioeconomic consequences of continuing agricultural expansion.