877 resultados para Decision Analysis
Resumo:
In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.
Resumo:
In an increasingly complex society, regulatory polices emerge as an important tool in public management. Nevertheless, regulation per se is no longer enough, and the agenda for a regulatory reform is increasing. Following this context, Brazil has implemented Regulatory Impact Analysis (RIA) in its regulatory agencies. Thus, Brazilian specificities have to be considered and, in this regard, a systematic approach provides a significant contribution. This article aims to address some critical reflections about which policy-makers should ask themselves before joining the implementation of a RIA system in the Brazilian context. Through a long-term perspective, the implementation of RIA must be seen as part of a permanent change in the administrative culture, understanding that RIA should be used as a further resource in the decision-making process, rather than a final solution.
Resumo:
Benchmarking is an important tool to organisations to improve their productivity, product quality, process efficiency or services. From Benchmarking the organisations could compare their performance with competitors and identify their strengths and weaknesses. This study intends to do a benchmarking analysis on the main Iberian Sea ports with a special focus on their container terminals efficiency. To attain this, the DEA (data envelopment analysis) is used since it is considered by several researchers as the most effective method to quantify a set of key performance indicators. In order to reach a more reliable diagnosis tool the DEA is used together with the data mining in comparing the sea ports operational data of container terminals during 2007.Taking into account that sea ports are global logistics networks the performance evaluation is essential to an effective decision making in order to improve their efficiency and, therefore, their competitiveness.
Resumo:
OBJECTIVE: To test discriminant analysis as a method of turning the information of a routine customer satisfaction survey (CSS) into a more accurate decision-making tool. METHODS: A 7-question, 10-multiple choice, self-applied questionnaire was used to study a sample of patients seen in two outpatient care units in Valparaíso, Chile, one of primary care (n=100) and the other of secondary care (n=249). Two cutting points were considered in the dependent variable (final satisfaction score): satisfied versus unsatisfied, and very satisfied versus all others. Results were compared with empirical measures (proportion of satisfied individuals, proportion of unsatisfied individuals and size of the median). RESULTS: The response rate was very high, over 97.0% in both units. A new variable, medical attention, was revealed, as explaining satisfaction at the primary care unit. The proportion of the total variability explained by the model was very high (over 99.4%) in both units, when comparing satisfied with unsatisfied customers. In the analysis of very satisfied versus all other customers, significant relationship was identified only in the case of the primary care unit, which explained a small proportion of the variability (41.9%). CONCLUSIONS: Discriminant analysis identified relationships not revealed by the previous analysis. It provided information about the proportion of the variability explained by the model. It identified non-significant relationships suggested by empirical analysis (e.g. the case of the relation very satisfied versus others in the secondary care unit). It measured the contribution of each independent variable to the explanation of the variation of the dependent one.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
Introduction / Aims: Adopting the important decisions represents a specific task of the manager. An efficient manager takes these decisions during a sistematic process with well-defined elements, each with a precise order. In the pharmaceutical practice and business, in the supply process of the pharmacies, there are situations when the medicine distributors offer a certain discount, but require payment in a shorter period of time. In these cases, the analysis of the offer can be made with the help of the decision tree method, which permits identifying the decision offering the best possible result in a given situation. The aims of the research have been the analysis of the product offers of many different suppliers and the establishing of the most advantageous ways of pharmacy supplying. Material / Methods: There have been studied the general product offers of the following medical stores: A&G Med, Farmanord, Farmexim, Mediplus, Montero and Relad. In the case of medicine offers including a discount, the decision tree method has been applied in order to select the most advantageous offers. The Decision Tree is a management method used in taking the right decisions and it is generally used when one needs to evaluate the decisions that involve a series of stages. The tree diagram is used in order to look for the most efficient means to attain a specific goal. The decision trees are the most probabilistic methods, useful when adopting risk taking decisions. Results: The results of the analysis on the tree diagrams have indicated the fact that purchasing medicines with discount (1%, 10%, 15%) and payment in a shorter time interval (120 days) is more profitable than purchasing without a discount and payment in a longer time interval (160 days). Discussion / Conclusion: Depending on the results of the tree diagram analysis, the pharmacies would purchase from the selected suppliers. The research has shown that the decision tree method represents a valuable work instrument in choosing the best ways for supplying pharmacies and it is very useful to the specialists from the pharmaceutical field, pharmaceutical management, to medicine suppliers, pharmacy practitioners from the community pharmacies and especially to pharmacy managers, chief – pharmacists.
Resumo:
In the last years there has been a considerable increase in the number of people in need of intensive care, especially among the elderly, a phenomenon that is related to population ageing (Brown 2003). However, this is not exclusive of the elderly, as diseases as obesity, diabetes, and blood pressure have been increasing among young adults (Ford and Capewell 2007). As a new fact, it has to be dealt with by the healthcare sector, and particularly by the public one. Thus, the importance of finding new and cost effective ways for healthcare delivery are of particular importance, especially when the patients are not to be detached from their environments (WHO 2004). Following this line of thinking, a VirtualECare Multiagent System is presented in section 2, being our efforts centered on its Group Decision modules (Costa, Neves et al. 2007) (Camarinha-Matos and Afsarmanesh 2001).On the other hand, there has been a growing interest in combining the technological advances in the information society - computing, telecommunications and knowledge – in order to create new methodologies for problem solving, namely those that convey on Group Decision Support Systems (GDSS), based on agent perception. Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities, in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life cycle. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the GDSS referred to above to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This attainment is vital, regarding the incoming to the market of new drugs and medical practices, which compete in the use of limited resources.
Resumo:
Dissertação de Mestrado em Gestão de Empresas/MBA.
Resumo:
OBJECTIVE: To estimate the spatial intensity of urban violence events using wavelet-based methods and emergency room data. METHODS: Information on victims attended at the emergency room of a public hospital in the city of São Paulo, Southeastern Brazil, from January 1, 2002 to January 11, 2003 were obtained from hospital records. The spatial distribution of 3,540 events was recorded and a uniform random procedure was used to allocate records with incomplete addresses. Point processes and wavelet analysis technique were used to estimate the spatial intensity, defined as the expected number of events by unit area. RESULTS: Of all georeferenced points, 59% were accidents and 40% were assaults. There is a non-homogeneous spatial distribution of the events with high concentration in two districts and three large avenues in the southern area of the city of São Paulo. CONCLUSIONS: Hospital records combined with methodological tools to estimate intensity of events are useful to study urban violence. The wavelet analysis is useful in the computation of the expected number of events and their respective confidence bands for any sub-region and, consequently, in the specification of risk estimates that could be used in decision-making processes for public policies.
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.
Resumo:
OBJECTIVE To analyze the incremental cost-utility ratio for the surgical treatment of hip fracture in older patients.METHODS This was a retrospective cohort study of a systematic sample of patients who underwent surgery for hip fracture at a central hospital of a macro-region in the state of Minas Gerais, Southeastern Brazil between January 1, 2009 and December 31, 2011. A decision tree creation was analyzed considering the direct medical costs. The study followed the healthcare provider’s perspective and had a one-year time horizon. Effectiveness was measured by the time elapsed between trauma and surgery after dividing the patients into early and late surgery groups. The utility was obtained in a cross-sectional and indirect manner using the EuroQOL 5 Dimensions generic questionnaire transformed into cardinal numbers using the national regulations established by the Center for the Development and Regional Planning of the State of Minas Gerais. The sample included 110 patients, 27 of whom were allocated in the early surgery group and 83 in the late surgery group. The groups were stratified by age, gender, type of fracture, type of surgery, and anesthetic risk.RESULTS The direct medical cost presented a statistically significant increase among patients in the late surgery group (p < 0.005), mainly because of ward costs (p < 0.001). In-hospital mortality was higher in the late surgery group (7.4% versus 16.9%). The decision tree demonstrated the dominance of the early surgery strategy over the late surgery strategy: R$9,854.34 (USD4,387.17) versus R$26,754.56 (USD11,911.03) per quality-adjusted life year. The sensitivity test with extreme values proved the robustness of the results.CONCLUSIONS After controlling for confounding variables, the strategy of early surgery for hip fracture in the older adults was proven to be dominant, because it presented a lower cost and better results than late surgery.