888 resultados para Decay of energy
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
Objective: Nutritional labeling systems are considered a tool to fight obesity since they aim to contribute for more informed food choices as well as assist consumers to make healthier nutrition options and in this manner, contribute to a decrease in the obesity rate. This study intends to analyze the effect of different types of labeling systems on parents’ purchasing decisions for their children on a specific product: breakfast cereals. More precisely, how labels affect parents’ perception of healthiness regarding cereals and if the nutritional information has an effect on intended purchases for their children. Participants and methods: We conducted a study with 135 Portuguese parents of children aged 4 to12 years. Parents answered a questionnaire with one of three hypothetical cereals menus. Menus only differed in their nutritional labeling technique: no labels (control group), reference intake labels or traffic light labels. In addition, we conducted 20 face-to-face interviews to a different group of parents in order to perform a recall task. Findings: This paper provides no evidence to suggest that energy labeling or traffic light labeling systems alone were successful in helping parents making healthy purchases of cereals for their children. Therefore, there is the need to promote supplementary policies to encourage the consumption of healthier food and help fight obesity.
Resumo:
The accurate estimation of total daily energy expenditure (TEE) in chronic kidney patients is essential to allow the provision of nutritional requirements; however, it remains a challenge to collect actual physical activity and resting energy expenditure in maintenance dialysis patients. The direct measurement of TEE by direct calorimetry or doubly labeled water cannot be used easily so that, in clinical practice, TEE is usually estimated from resting energy expenditure and physical activity. Prediction equations may also be used to estimate resting energy expenditure; however, their use has been poorly documented in dialysis patients. Recently, a new system called SenseWear Armband (BodyMedia, Pittsburgh, PA) was developed to assess TEE, but so far no data have been published in chronic kidney disease patients. The aim of this review is to describe new measurements of energy expenditure and physical activity in chronic kidney disease patients.
Resumo:
Continuous respiratory exchange measurements were performed on 10 healthy young women for 1 h before, 3 h during, and 3 h after either parenteral (iv) or intragastric (ig) administration of a nutrient mixture (52% glucose, 18% amino acid, and 30% lipid energy) infused at twice the postabsorptive resting energy expenditure (REE). REE rose from 0.98 +/- 0.02 (iv) and 0.99 +/- 0.02 kcal/min (ig) postabsorptively to 1.13 +/- 0.03 (iv) and 1.13 +/- 0.02 kcal/min (ig), resulting in nutrient-induced thermogenesis of 10 +/- 0.6 and 9.3 +/- 0.9%, respectively, when related to the metabolizable energy. The respiratory quotient rose from preinfusion values of 0.81 +/- 0.02 (iv) and 0.80 +/- 0.01 (ig) to 0.86 +/- 0.01 (iv) and 0.85 +/- 0.01 (ig). After nutrient administration the respiratory quotient fell significantly to below the preinfusion values. Plasma glucose and insulin concentrations rose during nutrient administration but were higher during the intravenous route. It is concluded that, although the response time to intragastric administration was delayed, the thermic effects and overall substrate oxidations were comparable during intravenous or intragastric administration, albeit, at lower plasma glucose and insulin concentrations via the intragastric route.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.
Resumo:
Objective To determine if there is an association between energy intake (EI) and overweight or obesity status (OWOB) in children with and without probable developmental coordination disorder (p-DCD). Methods 1905 children were included. The Bruininks-Oseretsky Test of Motor Proficiency was used to assess p-DCD, body mass index for OWOB, and the Harvard Food Frequency Questionnaire for EI. Comparative tests and logistic regressions were performed. Results Reported EI was similar between p-DCD and non-DCD children among boys (2291 vs. 2281 kcal/day, p=0.917), but much lower in p-DCD compared to non-DCD girls (1745 vs.. 2068 kcal/day, p=0.007). EI was negatively associated with OWOB in girls only (OR: 0.82 (0.68, 0.98)). Conclusions Girls with p-DCD have a lower reported EI compared to their non-DCD peers. EI is negatively associated with OWOB in girls with p-DCD. Future research is needed to assess longitudinally the potential impact of EI on OWOB in this population.
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.
Resumo:
Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.