922 resultados para Data replication processes
Resumo:
Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.
Resumo:
Background and aims: V itamin D is an important modulator o fnumerous c ellular processes, including innate and adaptive immunepathways. A recent large-scale genetic validation study performed withinthe framework of the Swiss Hepatitis C Cohort S tudy has demonstratedan association between t he 1α-hydroxylase promoter single nucleotidepolymorphism CYP27B1-1260 rs10877012 and sustained virologicresponse (SVR) after pegylated interferon-α ( PEG-IFN-α) plus ribavirintreatment of c hronic hepatitis C in patients w ith a p oor-response IL28Bgenotype. This suggests an intrinsic role o f vitamin D signaling in theresponse t o treatment of chronic hepatitis C, especially in patients withlimited sensitivity to IFN-α. In the present study, we investigated theeffect of 1,25-(OH)2 v itamin D3 (calcitriol) alone or in combination withIFN-α on the hepatitis C virus (HCV) life cycle in vitro.Methods: H uh-7.5 cells harboring Con1- or JFH-1-derived HCVreplicons or cell culture-derived HCV were exposed to 0.1-100 nMcalcitriol ± 1 -100 IU/ml IFN-α. The effect on HCV RNA replication andviral particle production was investigated by quantitative r eal-time PCR,immunoblot analyses, and infectivity titration analyses. The expression ofinterferon-stimulated genes (ISGs) and of calcitriol target genes wasassessed by quantitative real-time PCR.Results: Calcitriol had no relevant effect on the viability of Huh-7.5 cells.Calcitriol strongly induced and repressed the expression of the calcitrioltarget genes CYP24A1 and CCNC, respectively, confirming that Huh-7.5cells c an respond to c alcitriol signaling. P hysiological doses of calcitrioldid not significantly a ffect HCV RNA replication or i nfectious particleproduction in vitro, and calcitriol alone h ad no significant effect on theexpression of several ISGs. However, calcitriol in combination with IFN-αsubstantially increased the expression of ISGs compared to IFN-α alone.In addition, calcitriol plus IFN-α s ynergistically inhibited HCV RNAreplication.Conclusions: C alcitriol at physiological concentrations and IFN-α a ctsynergistically on the expression of I SGs and HCV RNA replication i nvitro. Experiments exploring the underlying mechanisms are underway.
Resumo:
QUESTIONS UNDER STUDY: To describe a population-based sample of patients with diabetes and the quality of their care in the canton of Vaud, Switzerland, as a baseline measure for the evaluation of the "Programme cantonal Diabète". METHODS: We conducted a self-administered paper-based questionnaire survey. Non-institutionalised adult (aged ≥18 years) patients with diabetes diagnosed for at least 1 year and residing in the canton of Vaud were recruited by community pharmacies. Women with gestational diabetes, people with obvious cognitive impairment or people not sufficiently fluent in French were excluded. Primary outcomes were recommended processes-of-care and outcomes of care (glycosylated haemoglobin [HbA1c], generic and disease-specific health-related quality of life (HRQoL), overall care score in relation to the Chronic Care Model). Other measures included diabetes education, self-management support and self-efficacy, health status, health behaviour and demographics. RESULTS: A total of 519 patients with diabetes were included. Whereas the mean HbA1c level was 7.3% (n = 177, 95% confidence interval 7.1-7.5), diabetes-specific processes-of-care and influenza vaccination were reported by less than two-thirds of the patients. Physical activity and diet recommendations results mirrored patients' difficulties with their management in daily life and diabetes-specific HRQoL was worst in the dimensions relative to diet (eating and drinking) and sex life. A minority of patients reported ever having participated in diabetes education courses (32.8%). Overall, patients were satisfied with their care and the support they received. CONCLUSIONS: This study provides a broad picture of the experiences of people living with diabetes in the canton of Vaud. It shall guide the development of targeted interventions within the "Programme cantonal Diabète".
Resumo:
PURPOSE: Health-related quality of life (HRQoL) is considered a representative outcome in the evaluation of chronic disease management initiatives emphasizing patient-centered care. We evaluated the association between receipt of processes-of-care (PoC) for diabetes and HRQoL. METHODS: This cross-sectional study used self-reported data from non-institutionalized adults with diabetes in a Swiss canton. Outcomes were the physical/mental composites of the short form health survey 12 (SF-12) physical composite score, mental composite score (PCS, MCS) and the Audit of Diabetes-Dependent Quality of Life (ADDQoL). Main exposure variables were receipt of six PoC for diabetes in the past 12 months, and the Patient Assessment of Chronic Illness Care (PACIC) score. We performed linear regressions to examine the association between PoC, PACIC and the three composites of HRQoL. RESULTS: Mean age of the 519 patients was 64.5 years (SD 11.3); 60% were male, 87% reported type 2 or undetermined diabetes and 48% had diabetes for over 10 years. Mean HRQoL scores were SF-12 PCS: 43.4 (SD 10.5), SF-12 MCS: 47.0 (SD 11.2) and ADDQoL: -1.6 (SD 1.6). In adjusted models including all six PoC simultaneously, receipt of influenza vaccine was associated with lower ADDQoL (β=-0.4, p≤0.01) and foot examination was negatively associated with SF-12 PCS (β=-1.8, p≤0.05). There was no association or trend towards a negative association when these PoC were reported as combined measures. PACIC score was associated only with the SF-12 MCS (β=1.6, p≤0.05). CONCLUSIONS: PoC for diabetes did not show a consistent association with HRQoL in a cross-sectional analysis. This may represent an effect lag time between time of process received and health-related quality of life. Further research is needed to study this complex phenomenon.
Resumo:
Background/Purpose: Gout is a common and excruciatingly painful inflammatory arthritis caused by hyperuricemia. In addition to various lifestyle risk factors, a substantial genetic predisposition to gout has long been recognized. The Global Urate Genetics Consortium (GUGC) has aimed to comprehensively investigate the genetics of serum uric acid and gout using data from _ 140,000 individuals of European-ancestry, 8,340 individuals of Indian ancestry, 5,820 African-Americans, and 15,286 Japanese. Methods: We performed discovery GWAS meta-analyses of serum urate levels (n_110,347 individuals) followed by replication analyses (n_32,813 different individuals). Our gout analysis involved 3,151 cases and 68,350 controls, including 1,036 incident gout cases that met the American College of Rheumatology Criteria. We also examined the association of gout with fractional excretion of uric acid (n_6,799). A weighted genetic urate score was constructed based on the number of risk alleles across urate-associated loci, and their association with the risk of gout was evaluated. Furthermore, we examined implicated transcript expression in cis (expression quantitative trait loci databases) for potential insights into the gene underlying the association signal. Finally, in order to further identify urate-associated genomic regions, we performed functional network analyses that incorporated prior knowledge on molecular interactions in which the gene products of implicated genes operate. Results: We identified and replicated 28 genome-wide significant loci in association with serum urate (P 5_10_8), including all previously-reported loci as well as 18 novel genetic loci. Unlike the majority of previouslyidentified loci, none of the novel loci appeared to be obvious candidates for urate transport. Rather, they were mapped to genes that encode for purine production, transcription, or growth factors with broad downstream responses. Besides SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly (P _ 5_10_8) between sexes. Urateincreasing alleles were associated with an increased risk of gout for all loci. The urate genetic risk score (ranging from 10 to 45) was significantly associated with an increased odds of prevalent gout (OR per unit increase, 1.11; 95% CI, 1.09-1.14) and incident gout (OR, 1.10; 95% CI, 1.08-1.13). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. Detailed characterization of the loci revealed associations with transcript expression and the fractional excretion of urate. Network analyses implicated the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. Conclusion: The novel genetic candidates identified in this urate/gout consortium study, the largest to date, highlight the importance of metabolic control of urate production and urate excretion. The modulation by signaling processes that influence metabolic pathways such as glycolysis and the pentose phosphate pathway appear to be central mechanisms underpinned by the novel GWAS candidates. These findings may have implications for further research into urate-lowering drugs to treat and prevent gout.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
Resumo:
The paper addresses the concept of multicointegration in panel data frame- work. The proposal builds upon the panel data cointegration procedures developed in Pedroni (2004), for which we compute the moments of the parametric statistics. When individuals are either cross-section independent or cross-section dependence can be re- moved by cross-section demeaning, our approach can be applied to the wider framework of mixed I(2) and I(1) stochastic processes analysis. The paper also deals with the issue of cross-section dependence using approximate common factor models. Finite sample performance is investigated through Monte Carlo simulations. Finally, we illustrate the use of the procedure investigating inventories, sales and production relationship for a panel of US industries.
Resumo:
The paper addresses the concept of multicointegration in panel data frame- work. The proposal builds upon the panel data cointegration procedures developed in Pedroni (2004), for which we compute the moments of the parametric statistics. When individuals are either cross-section independent or cross-section dependence can be re- moved by cross-section demeaning, our approach can be applied to the wider framework of mixed I(2) and I(1) stochastic processes analysis. The paper also deals with the issue of cross-section dependence using approximate common factor models. Finite sample performance is investigated through Monte Carlo simulations. Finally, we illustrate the use of the procedure investigating inventories, sales and production relationship for a panel of US industries.
Resumo:
The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
La mousse haplobiontique Physcomitrella patens est utilisée comme système génétique modèle pour l'étude du développement des plantes. Cependant, l'absence d'un protocole efficace de transformation a constitué jusqu'à présent un gros désavantage méthodologique pour le développement futur de ce système expérimental. Les résultats présentés dans le premier chapitre relatent la mise au point d'un protocole de transformation basé sur la technique de transfert direct de gènes dans des protoplastes par précipitation au PEG. Un essai d'expression transitoire de gènes a été mis au point. Ce protocole a été adapté afin de permettre l'introduction in vivo d'anticorps dans des protoplastes. Le protocole modifié permet d'introduire simultanément du DNA et des IgG dans les cellules, et nous avons démontré que ces anticorps peuvent inactiver spécifiquement le produit d'un gène co-introduit (GUS), ainsi que certaines protéines impliquées dans des processus cellulaires (tubuline). Cet essai, baptisé "essai transitoire d'immuno-inactivation in vivo", devrait être directement applicable à d'autres protoplastes végétaux, et permettre l'élaboration de nouvelles stratégies dans l'étude de processus cellulaires. Le second chapitre est consacré aux expériences de transformation de la mousse avec des gènes conférant une résistance à des antibiotiques. Nos résultats démontrent que l'intégration de gènes de résistance dans le génome de P. patens est possible, mais que cet événement est rare. Il s'agit là néanmoins de la première démonstration d'une transformation génétique réussie de cet organisme. L'introduction de gènes de résistance aux antibiotiques dans les protoplastes de P. patens génère à haute fréquence des clones résistants instables. Deux classes de clones instables ont été identifiés. La caractérisation phénotypique, génétique et moléculaire de ces clones suggère fortement que les séquences transformantes sont concaténées pour former des structures de haut poids moléculaire, et que ces structures sont efficacement répliquées et maintenues dans les cellules résistantes en tant qu'éléments génétiques extrachromosomaux. Ce type de transformation nous permet d'envisager des expériences permettant l'identification des séquences génomiques impliquées dans la replication de l'ADN de mousse. Plusieurs lignées transgéniques ont été retransformées avec des plasmides portant des séquences homologues aux séquences intégrées dans le génome, mais conférant une résistance à un autre antibiotique. Les résultats présentés dans le troisième chapitre montrent que les fréquences de transformation intégrative dans les lignées transgéniques sont 10 fois plus élevées que dans la lignée sauvage, et que cette augmentation est associée à une coségrégation des gènes de résistance dans la plupart des clones testés. Ces résultats génétiques indiquent que l'intégration de séquences d'ADN étranger dans le génome de P. patens a lieu en moyenne 10 fois plus fréquemment par recombinaison homologue que par intégration aléatoire. Ce rapport homologue/aléatoire est 10000 fois supérieur aux rapports obtenus avec d'autres plantes, et fournit l'outil indispensable à la réalisation d'expériences de génétique inverse dans cet organisme à haplophase dominante. THESIS SUMMARY The moss Physcomitrella patens is used as a model genetic system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. But further development of this model system was hampered by the lack of a protocol allowing the genetic transformation of this plant. We have developed a transformation protocol based on PEG-mediated direct gene transfer to protoplasts. Our data demonstrate that this procedure leads to the establishment of an efficient transient gene expression assay. A slightly modified protocol has been developed allowing the in vivo introduction of antibodies in moss protoplasts. Both DNA and IgGs can be loaded simultaneously, and specific antibodies can immunodeplete the product of an expression cassette (GUS) as well as proteins involved in cellular processes (tubulins). This assay, named transient in vivo immunodepletion assay, should be applicable to other plant protoplasts, and offers new approaches to study cellular processes. Transformations have been performed with bacterial plasmids carrying antibiotic resistance expression cassette. Our data demonstrate that integrative transformation occurs, but at low frequencies. This is the first demonstration of a successful genetic transformation of mosses. Resistant unstable colonies are recovered at high frequencies following transformation, and two different classes of unstable clones have been identified. Phenotypical, genetic and molecular characterisation of these clones strongly suggests that bacterial plasmids are concatenated to form high molecular arrays which are efficiently replicated and maintained as extrachromosomal elements in the resistant cells. Replicative transformation in P. patens should allow the design of experiments aimed at the identification of genomic sequences involved in moss DNA replication. Transgenic strains have been retransformed with bacterial plasmids carrying sequences homologous to the integrated transloci, but conferring resistance to another antibiotic. Our results demonstrate an order of magnitude increase of integrative transformation frequencies in transgenic strains as compared to wild-type, associated with cosegregation of the resistance genes in most of these double resistant transgenic strains. These observations provide strong genetic evidence that gene targeting occurs about ten times more often than random integration in the genome of P. patens. Such ratio of targeted to random integration is about 10 000 times higher than previous reports of gene targeting in plants, and provides the essential requirement for the development of efficient reverse genetics in the haplodiplobiontic P. patens.
Resumo:
We consider a general class of non-Markovian processes defined by stochastic differential equations with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times associated with correlation functions in the steady state. This formalism is a generalization of a previous approach for Markovian processes. The theoretical results are shown to be in satisfactory agreement both with experimental data for a cubic bistable system and also with a computer simulation of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in different situations.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.