859 resultados para Data mining, Business intelligence, Previsioni di mercato
Resumo:
The aims of the present study are to explore the willingness to pay a tax for the abolition of the use of pesticides as well as a premium price per kilo for organically grown fruit. An investigation was carried out in the region of Emilia-Romagna both by means of face to face questionnaires administered randomly in large supermarkets and via the World Wide Web. The results of econometric estimates show that consumers in this region appear to be particularly sensitive to the ban of pesticides and willing to pay higher prices for such products.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
Inom Business Intelligence har begreppet Self-Service Business Intelligence (Self-Service BI) vuxit fram. Self-Service BI omfattar verktyg vilka möjliggör för slutanvändare att göra analyser och skapa rapporter utan teknisk support. Ett av dessa verktyg är Microsoft PowerPivot.På Transportstyrelsens Järnvägsavdelning finns behov av ett Self-Service BI-verktyg. Vi fick i uppdrag av Sogeti att undersöka om PowerPivot var ett lämpligt verktyg för Transportstyrelsen. Målet med uppsatsen har varit att testa vilka tekniska möjligheter och begränsningar PowerPivot har samt huruvida PowerPivot är användbart för Transportstyrelsen.För att få en djupare förståelse för Self-Service BI har vi kartlagt vilka möjligheter och begränsningar med Self-Service BI-verktyg som finns beskrivna i litteraturen. Vi har sedan jämfört dessa med våra testresultat vilket har varit syftet med uppsatsen.Resultatet av testerna har visat att Transportstyrelsens Järnvägsavdelning initialt behöver teknisk support för att använda PowerPivot. Testerna har även visat att vissa av Transportstyrelsens krav inte kan uppfyllas. Detta minskar användbarheten för Transportstyrelsen.Vidare har vi kommit fram till att Self-Service BI inte alltid är enkelt att använda för slutanvändare utan teknisk support. Resultatet visar även att det krävs en BI-infrastruktur för att enkelt skapa rapporter med god kvalitet och högsta möjliga korrekthet.
Resumo:
Denna rapport behandlar vilka egenskaper som är viktiga att ta hänsyn till vid val av rapportverktyg inom området Business Intelligence. Begreppet BI är relativt omfattande och syftar till färdigheter, teknologier, applikationer och metoder av systematisk och vetenskaplig art som en organisation använder för att bättre förstå sin verksamhet, sin omgivning och omvärld. Rapportverktyg utgör således en mindre del i en större kedja av processer för att stödja beslutstagande.Landstinget Dalarna har anlitat Sogeti, som har varit vår uppdragsgivare för detta examensarbete, för att implementera BI i sin verksamhet och vår studie har sitt ursprung i att Landstinget Dalarna idag har ett stort behov av olika typer av rapporter i många olika delar av organisationen. Rapportbehovet har visat sig vara omfattande och för att lätta på arbetsbördan för de systemutvecklare som skapar rapporter har funderingar framkommit att det skulle kunna vara en bra lösning att låta användarna inom Landstinget Dalarna själva skapa en del av sina egna rapporter. Målet med arbetet är att ge de systemutvecklare som arbetar i projektet riktlinjer kring vilka egenskaper olika rapportverktyg innehar för att de enklare skall kunna avgöra vilket som är lämpligast att använda. De verktyg som i denna studie jämförs med varandra är Report Builder 3.0, PowerPivot samt Dashboard Designer 2010, samtliga från Microsoft.För att göra denna jämförelse mellan olika rapportverktyg krävs bra underlag för att kunna förstå vilka egenskaper som är relevanta att fokusera på samt om några egenskaper väger tyngre än andra.Efter att ha utfört intervjuer med systemutvecklare som arbetar med BI har vi kunnat skapa oss en tydligare bild av detta område. Egenskaperna har sammanställts för att användas i vår jämförelse mellan de olika rapportverktygen. Att dessa egenskaper är av vikt bekräftas till viss del av den teori som finns på området. De egenskaper som främst visar sig vara viktiga i valet är vilken befintlig plattform som används, verktygets möjlighet att skapa interaktiva rapporter samt vilken typ av användare verktyget riktar sig till. Även andra egenskaper visar sig vara viktiga att ta hänsyn till, men då främst beroende på vilka krav som ställs. Resultatet av den praktiska jämförelsen mellan de olika rapportverktygen visar att verktygen till viss del överlappar varandra i funktionalitet samtidigt som de är anpassade för olika typer av användare och plattformar. De utgör allihop delar i Microsofts BI-pussel som på olika sätt skall bidra till att alltid kunna täcka upp de krav som kan finnas beroende på behov och förutsättningar. Samtidigt visar det sig att jämförda rapportverktyg besitter vissa generella egenskaper som gör att verktygen i stora drag klarar, om än på olika sätt, att skapa snarlika rapporter.
Resumo:
Este trabalho apresenta um estudo de caso de mineração de dados no varejo. O negócio em questão é a comercialização de móveis e materiais de construção. A mineração foi realizada sobre informações geradas das transações de vendas por um período de 8 meses. Informações cadastrais de clientes também foram usadas e cruzadas com informações de venda, visando obter resultados que possam ser convertidos em ações que, por conseqüência, gerem lucro para a empresa. Toda a modelagem, preparação e transformação dos dados, foi feita visando facilitar a aplicação das técnicas de mineração que as ferramentas de mineração de dados proporcionam para a descoberta de conhecimento. O processo foi detalhado para uma melhor compreensão dos resultados obtidos. A metodologia CRISP usada no trabalho também é discutida, levando-se em conta as dificuldades e facilidades que se apresentaram durante as fases do processo de obtenção dos resultados. Também são analisados os pontos positivos e negativos das ferramentas de mineração utilizadas, o IBM Intelligent Miner e o WEKA - Waikato Environment for Knowledge Analysis, bem como de todos os outros softwares necessários para a realização do trabalho. Ao final, os resultados obtidos são apresentados e discutidos, sendo também apresentada a opinião dos proprietários da empresa sobre tais resultados e qual valor cada um deles poderá agregar ao negócio.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico. O estudo da estabilidade da representação de redes frente à variação amostral dos dados, realizado com base em simulações envolvendo 500 réplicas em 6 níveis de probabilidade de inclusão das arestas nas réplicas, fornece evidência em favor da validade dos resultados obtidos.
Resumo:
O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.
Resumo:
Trata da aplicação de ferramentas de Data Mining e do conceito de Data Warehouse à coleta e análise de dados obtidos a partir das ações da Secretaria de Estado da Educação de São Paulo. A variável dependente considerada na análise é o resultado do rendimento das escolas estaduais obtido através das notas de avaliação do SARESP (prova realizada no estado de São Paulo). O data warehouse possui ainda dados operacionais e de ações já realizadas, possibilitando análise de influência nos resultados
Resumo:
A eficiência operacional nos bancos é um fator que vem ganhando importância em função da evolução no cenário econômico, apontando para maior competitividade. Nesse contexto, a gestão operacional agências torna-se cada vez mais relevante. Entretanto, a atividade de gerenciar milhares de agências, com necessidade de agilidade na tomada de decisões, mostra-se complexa. Nesse sentido, o Business Intelligence se apresenta como uma solução para otimizar a atividade de gestão, adicionando inteligência ao negócio. Não obstante, questões práticas de implementação e uso são desafios para unir BI e gestão de agências bancárias. Este trabalho analisa a aplicação de Business Intelligence para a gestão operacional de agências bancárias em busca de práticas relevantes. O método de pesquisa utilizado é o estudo de caso, aplicado em uma grande instituição financeira nacional. Por meio de consulta a documentações, entrevistas com Gerentes Regionais e Equipe de Projeto buscou-se verificar proposições que foram depreendidas da revisão da literatura sob dois aspectos: implementação e utilização da solução de BI. Como resultado, foram confirmadas as proposições apontando para importância do apoio da organização e alinhamento ao negócio para uma implementação bem sucedida, além da constatação que BI não pode ser tratado apenas como uma ferramenta, na verdade além da parte técnica, envolve processos e negócios. Com relação à utilização, foi verificado que BI traz mais qualidade à informação, melhora o suporte ao processo de tomada de decisão e trás benefícios intangíveis e tangíveis para a gestão operacional de agências bancárias, como aumento da produtividade, redução de custos e riscos e melhor atendimento ao cliente.