964 resultados para Data Migration Processes Modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore the determinants of usage of six different types of health care services, using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number of models for univariate count data, including semiparametric, semi-nonparametric and finite mixture models. We find that the complexity of the model that is required to fit the data well depends upon the way in which the data is pooled across sexes and over time, and upon the characteristics of the usage measure. Pooling across time and sexes is almost always favored, but when more heterogeneous data is pooled it is often the case that a more complex statistical model is required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Odds ratios for head and neck cancer increase with greater cigarette and alcohol use and lower body mass index (BMI; weight (kg)/height(2) (m(2))). Using data from the International Head and Neck Cancer Epidemiology Consortium, the authors conducted a formal analysis of BMI as a modifier of smoking- and alcohol-related effects. Analysis of never and current smokers included 6,333 cases, while analysis of never drinkers and consumers of < or =10 drinks/day included 8,452 cases. There were 8,000 or more controls, depending on the analysis. Odds ratios for all sites increased with lower BMI, greater smoking, and greater drinking. In polytomous regression, odds ratios for BMI (P = 0.65), smoking (P = 0.52), and drinking (P = 0.73) were homogeneous for oral cavity and pharyngeal cancers. Odds ratios for BMI and drinking were greater for oral cavity/pharyngeal cancer (P < 0.01), while smoking odds ratios were greater for laryngeal cancer (P < 0.01). Lower BMI enhanced smoking- and drinking-related odds ratios for oral cavity/pharyngeal cancer (P < 0.01), while BMI did not modify smoking and drinking odds ratios for laryngeal cancer. The increased odds ratios for all sites with low BMI may suggest related carcinogenic mechanisms; however, BMI modification of smoking and drinking odds ratios for cancer of the oral cavity/pharynx but not larynx cancer suggests additional factors specific to oral cavity/pharynx cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developments in the statistical analysis of compositional data over the last twodecades have made possible a much deeper exploration of the nature of variability,and the possible processes associated with compositional data sets from manydisciplines. In this paper we concentrate on geochemical data sets. First we explainhow hypotheses of compositional variability may be formulated within the naturalsample space, the unit simplex, including useful hypotheses of subcompositionaldiscrimination and specific perturbational change. Then we develop through standardmethodology, such as generalised likelihood ratio tests, statistical tools to allow thesystematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require specialconstruction. We comment on the use of graphical methods in compositional dataanalysis and on the ordination of specimens. The recent development of the conceptof compositional processes is then explained together with the necessary tools for astaying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland.Finally we point out a number of unresolved problems in the statistical analysis ofcompositional processes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acquisition of neuroendocrine (NE) characteristics by prostate cancer (PCa) cells is closely related to tumour progression and hormone resistance. The mechanisms by which NE cells influence PCa growth and progression are not fully understood. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in oncogenic processes, and MIF serum levels correlate with aggressiveness of PCa. Here, we investigated the regulation and the functional consequences of MIF expression during NE transdifferentiation of PCa cells. NE differentiation (NED) of LNCaP cells, initiated either by increasing intracellular levels of cAMP or by culturing cells in an androgen-depleted medium, was associated with markedly increased MIF release. Yet, intracellular MIF protein and mRNA levels and MIF gene promoter activity decreased during NED of LNCaP cells, suggesting that NED favours MIF release despite decreasing MIF synthesis. Adenoviral-mediated forced MIF expression in NE-differentiated LNCaP cells increased cell proliferation without affecting the expression of NE markers. Addition of exogenous recombinant MIF to LNCaP and PC-3 cells stimulated the AKT and ERK1/2 signalling pathways, the expression of genes involved in PCa, as well as proliferation and resistance to paclitaxel and thapsigargin-induced apoptosis. Altogether, these data provide evidence that increased MIF release during NED in PCa may facilitate cancer progression or recurrence, especially following androgen deprivation. Thus, MIF could represent an attractive target for PCa therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RÉSUMÉ Une espèce est rarement composée d'une population unique. Parce que les individus ont des capacités de dispersion limitées et que les paysages sont des mosaïques d'habitats, la plupart des espèces sont plutôt composées de sous-populations connectées par la migration. Cette variation spatiale influence directement la distribution de la variabilité génétique dans et entre les populations. Durant ce travail, nous avons abordé certains des processus populationnels qui ont joué un rôle supposé dans l'apparition de nouvelles espèces au sein du genre Trochulus. Plus précisément, nous avons tenté d'évaluer les impacts respectifs de l'isolement passé (facteurs historiques) et présent (facteurs locaux). Nous avons d'abord pu montrer que les faibles capacités de dispersion des escargots terrestres ont directement influencé leur histoire évolutive à toutes les échelles spatiales et temporelles. En réduisant l'effet homogénéisant de la migration, une faible dispersion maintient dans les populations les traces génétiques d'évènements passés. A l'échelle de la distribution globale de Trochulus villosus, ces traces ont permis de reconstruire une histoire faite d'isolements et d'expansions de populations. En combinant des données génétiques avec une modélisation de la niche climatique passée, il a été possible de proposer un scénario significativement meilleur que toutes les hypothèses alternatives que nous avons testées. A l'échelle locale par contre, l'héritage historique est difficile à distinguer de la dynamique actuelle. Ce fut le cas des lignées mitochondriales du complexe sericeus-hispidus : les deux principales lignées étaient phylogénétiquement éloignées, avaient eu des démographies passées différentes et corrélaient avec des différences morphologiques. D'un autre côté, le flux de gène nucléaire était fort, contredisant l'idée de deux espèces cryptiques isolées reproductivement. Pour pouvoir conclure à la présence ou non de deux espèces, il nous a manqué des informations locales sur la dynamique des populations et les conditions écologiques que l'on trouve dans la région d'étude. Enfin, nous avons pu souligner que la connectivité entre populations d'escargots est soumise à la qualité des habitats et à leur organisation spatiale. Les escargots sont dépendants d'un habitat et s'y adaptent, comme l'indiquent la présence de «poils » uniquement sur la coquille d'espèces vivant dans des habitats humides ou la corrélation entre morphologie et habitat au sein du complexe sericeus-hispidus. Logiquement donc, les escargots migrent préférentiellement au travers d'habitats favorables comme l'a montré la réduction de flux de gènes au travers des prairies chez T. villosus (une espèce forestière). De ces données, nous pouvons supposer que les populations d'escargots en particulier, et des espèces à faible dispersion en général, ont de fortes chances d'être affectées par les changements climatiques, avec de probables implications pour leurs histoires évolutives. SUMMARY : Species rarely consists in a single population. Because individuals have limited dispersal abilities, because landscapes are habitat patchworks, most species are made of several subpopulations connected by migration. This spatial variation has consequences on the distribution of genetic diversity within and between populations, creating a structure among the populations. During the present work, we investigated some of the population processes assumed to have played an important role on the speciation within the genus Trochulus. More specifically, we questioned the respective impacts of past (historical factors) or present (local factors) population isolations. We first could show that the poor dispersal abilities of land snails have had profound impacts on their evolutionary histories at all spatial and temporal scales. Low dispersal maintains a strong signature of past events in the populations by minimising the homogenising effects of geneflow. At the scale of Trochulus villosus global distribution, they allowed to retrieve the detailed history of this species population isolations and expansions. Combining a large genetic dataset with paleo-climatic niche modelling ended up with a historical scenario significantly better than all traditional alternatives we tested. At local scale on the contrary, past events become difficult to tease apart from ongoing processes. This was the case for the divergent mitochondria) lineages within the sericeus-hispidus complex: the two principal lineages appeared to be phylogenetically distant, to have experienced different demographic histories and to correlate with morphological differences. On the other hand, nuclear (present day) geneflow was high, contradicting the idea of two reproductively isolated cryptic species. Information on the local population dynamics and environmental conditions are lacking to be able to decide whether past isolation has indeed resulted here in new species. Finally, we emphasised the importance of the habitat types present in a landscape as well as their spatial organisation for the population connectivity of land snails. These species are tightly dependent on a habitat and adapt to it as shown by thé occurrence of hair-like structures only in species living in humid environments or by the correlation between shell morphology and habitat in the sericeus-hispidus complex. As a result, land snails preferentially migrate through favourable habitats: Trochulus villosus, a forest species, had its geneflow significantly reduced across meadows. From these data, we can hypothesise that the populations of land snails in particular and of low dispersing species in general are likely to be strongly affected by the ongoing climate changes, with potential major consequences on their evolutionary histories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species' lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population's demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.