980 resultados para Damping (Mechanics)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sudden eccentricity increases of asteroidal motion in 3/1 resonance with Jupiter were discovered and explained by J. Wisdom through the occurrence of jumps in the action corresponding to the critical angle (resonant combination of the mean motions). We pursue some aspects of this mechanism, which could be termed relaxation-chaos: that is, an unconventional form of homoclinic behavior arising in perturbed integrable Hamiltonian systems for which the KAM theorem hypothesis do not hold. © 1987.
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
Damped oscillatory motion is one of the most widely studied movements in physics courses. Despite this fact, dry damped oscillatory motion is not commonly discussed in physics textbooks. In this work, we discuss the dry and viscous dampec pendulum, in a teaching experiment that can easily be performed by physics or engineering students.
Resumo:
The formalism of supersymmetric quantum mechanics supplies a trial wave function to be used in the variational method. The screened Coulomb potential is analyzed within this approach. Numerical and exact results for energy eigenvalues are compared.
Resumo:
There still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) underwent ascending aorta stenosis for 8 weeks (group AAS, n=9). LV performance was assessed by transthoracic echocardiography under light anesthesia. Myocardial function was studied in isolated papillary muscle preparation during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, n=9). LV weight-to-body weight ratio (C: 2.0 ± 0.5 mg/g; AAS: 3.3 ± 0.7 mg/g), LV relative wall thickness (C: 0.19 ± 0.02; AAS; 0.34 ± 0.10), and LV fractional shortening (C: 54 ± 5%; AAS: 70 ± 8%) were increased in the group AAS (p<0.05). Echocardiographic analysis also indicated a significant association (r=0.74; p<0.001) between percent fractional shortening and LV relative wall thickness. The performance of AAS isolated muscle revealed that active tension (C: 6.6 ± 1.7 g/mm 2; AAS: 6.5 ± 1.5 g/mm 2) and maximum rate of tension development (C: 69 ± 21 g/mm 2/s; AAS: 69 ± 18 g/mm 2) were not significantly different from group C (p>0.05). In conclusion: 1) Compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance; 2) The improved LV function might be due to the ventricular remodeling characterized by an increased relative wall thickness. Copyright © 2002 By PJD Publications Limited.
Resumo:
The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.
Resumo:
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
Tooth transpositions present at a relatively low incidence in the world population and primarily affect maxillary canines and premolars. Treatment of this disturbance should take into account aspects such as facial pattern, age, malocclusion, tooth-size discrepancy, stage of eruption, and magnitude of the transposition. Mechanics for correction should be entirely individualized, reducing the risks and adverse effects. Practitioners often select simpler options, indicating extraction of permanent teeth, which is an irreversible procedure that may bring about damages to the patient. This study presents a case report and treatment of unilateral transposition of maxillary canine and premolar with repositioning of affected teeth to their respective normal positions. © 2006 by The EH Angle Education and Research Foundation, Inc.
Resumo:
In this paper we consider the transmission problem, in one space dimension, for linear dissipative waves with frictional damping. We study the wave propagation in a medium with a component with attrition and another simply elastic. We show that for this type of material, the dissipation produced by the frictional part is strong enough to produce exponential decay of the solution, no matter how small is its size. ©2007 Texas State University.
Resumo:
Carbon fiber reinforced polymer composites have been used in wide variety of applications including, aerospace, marine, sporting equipment as well as in the defense sector due to their outstanding properties at low density. In many of their applications, moisture absorption takes place which may result in a reduction in mechanical properties even at lower temperature service. In this work, the viscoelastic properties, such as storage modulus (E′) and loss modulus (E″), were obtained through vibration damping tests for three carbon fiber/epoxy composite families up to the saturation point (6 weeks). Three carbon fiber/epoxy composites having [0/0] s, [0/90] s, and [±45] s orientations were studied. During vibration tests the storage modulus (E′) and loss modulus (E″) were monitored as a function of moisture uptake, and it was observed that the natural frequencies and E′ values decreased with the increase during hygrothermal conditioning due to the matrix plasticization. © 2007 Wiley Periodicals, Inc.