975 resultados para DOC composition
Resumo:
Mixed-species bird flocks are attractive models for the investigation of geographical variation in animal communities, as they represent a subset of the avifauna in most forested regions of the world. Yet studies of the regional variation in flock size and the composition of flocks are few, due to the predominance of studies carried out at single study site. Here, we review nine studies of mixed-species flocks conducted at 16 sites along the Western Ghats in India and in Sri Lanka. We find that flock size varies as much within this region as it does globally, with observation time being a confounding variable. Flock composition, however, is predictably related to elevation. Flocks at high elevations (>1200 m) in the Western Ghats strongly resemble flocks at high elevations in the mountain ranges of Sri Lanka in their composition, especially at the family level. We compare these flocks to flocks of other regions and make recommendations on study methodology that can facilitate comparisons across studies.
Resumo:
In Ge-As-Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5-x glasses over extended composition ranges. A distinct change in T-g is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (T-g) at x = 55 corresponding to the average coordination number (Z(av)) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Z(av) = 2.40 as predicted by the recent theories. The glass forming tendency (K-gl) and Delta T (=T-c-T-g) is low for the glasses in the GFR I and high for the glasses in the GFR II.
Resumo:
Context: High bone mass (HBM), detected in 0.2% of dual-energy x-ray absorptiometry (DXA) scans, is characterized by raised body mass index, the basis for which is unclear. Objective: To investigate why body mass index is elevated in individuals with HBM, we characterized body composition and examined whether differences could be explained by bone phenotypes, eg, bone mass and/or bone turnover. Design, Setting, and Participants: We conducted a case-control study of 153 cases with unexplained HBM recruited from 4 UK centers by screening 219 088 DXA scans. Atotal of 138 first-degree relatives (of whom 51 had HBM) and 39 spouses were also recruited. Unaffected individuals served as controls. Main Outcome Measures: We measured fat mass, by DXA, and bone turnover markers. Results: Amongwomen, fat mass was inversely related to age in controls (P<.01), but not in HBM cases (P<.96) in whom mean fat mass was 8.9 [95% CI 4.7, 13.0] kg higher compared with controls (fully adjusted mean difference, P<.001). Increased fat mass in male HBM cases was less marked (gender interaction P = .03). Compared with controls, lean mass was also increased in female HBM cases (by 3.3 [1.2, 5.4] kg; P<.002); however, lean mass increases wereless marked than fat mass increases, resulting in 4.5% lower percentage lean mass in HBM cases (P<.001). Osteocalcin was also lower in female HBM cases compared with controls (by 2.8 [0.1, 5.5]μg/L; P = .04). Differences in fat mass were fully attenuated after hip bone mineral density (BMD) adjustment (P = .52) but unchanged after adjustment for bone turnover (P < .001), whereas the greater hip BMD in female HBM cases was minimally attenuated by fat mass adjustment (P<.001). Conclusions: HBM is characterized by a marked increase in fat mass in females, statistically explained by their greater BMD, but not by markers of bone turnover. Copyright © 2013 by The Endocrine Society.
Resumo:
The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool `PromPredict'. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.
Resumo:
We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.
Resumo:
Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.
Resumo:
The purpose of this work was to elucidate the ontogeny of interleukin-10 (IL-10) secretion from newborn mononuclear cells (MCs), and to examine its relation to the secretion of interferon-g (IFN-g) and immunoglobulins (Igs). The initial hypothesis was that the decreased immunoglobulin (Ig) synthesis of newborn babies was the result of immature cytokine synthesis regulation, which would lead to excessive IL-10 production, leading in turn to suppressed IFN-g secretion. Altogether 57 full-term newborns and 34 adult volunteers were enrolled. Additionally, surface marker compositions of 29 premature babies were included. Enzyme-linked immunoassays were used to determine the amount of secreted IL-10, IFN-g, and Igs, and the surface marker composition of MC were analyzed with a FACScan flow cytometer. The three most important findings were: 1. Cord blood MC, including CD5+ B cells, are able to secrete IL-10. However, when compared with adults, the secretion of IL-10 was decreased. This indicates that reasons other than excessive IL-10 secretion are responsible of reduced IFN-g secretion in newborns. 2. As illustrated by the IL-10 and IFN-g secretion pattern, newborn cytokine profile was skewed towards the Th2 type. However, approximately 25% of newborns had an adult like cytokine profile with both good IL10 and IFN-g secretion, demonstrating that fullterm newborns are not an immunologically homogenous group at the time of birth. 3. There were significant differences in the surface marker composition of MCs between individual neonates. While gestational age correlated with the proportion of some MC types, it is evident that there are many other maternal and fetal factors that influence the maturity and nature of lymphocyte subpopulations in individual neonates. In conclusion, the reduced ability of neonates to secrete Ig and IFN-g is not a consequence of high IL-10 secretion. However, individual newborns differ significantly in their ability to secrete cytokines as well as Igs.
Resumo:
P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Electrical Switching Studies on bulk Ge10Se90-xTlx ( 15 <= x <= 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90-xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (V-T) of Ge10Se90-xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition. the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90-xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90-xTlx glasses exhibit a small Cusp around the composition x = 22. which is understood on the basis of a thermally reversing window in this system in the composition range 22 <= x <= 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.