855 resultados para Cyclooxygenase Inhibitors
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.
Resumo:
The incidence of esophageal adenocarcinoma has increased in recent years, and Barrett's esophagus is a recognized risk factor. Gastroesophageal reflux of acid and/or bile is linked to these conditions and to reflux esophagitis. Inflammatory disorders can lead to carcinogenesis through activation of "prosurvival genes," including cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Increased expression of these enzymes has been found in esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Polymorphic variants in COX-2 and iNOS genes may be modifiers of risk of these conditions. In a population-based case-control study, we examined associations of the COX-2 8473 T>C and iNOS Ser 608 Leu (C>T) polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), and reflux esophagitis (n = 230) and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using TaqMan allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. The presence of at least one COX-2 8473 C allele was associated with a significantly increased risk of esophageal adenocarcinoma (adjusted odds ratio, 1.58; 95% confidence interval, 1.04-2.40). There was no significant association between this polymorphism and risk of Barrett's esophagus or reflux esophagitis or between the iNOS Ser 608 Leu polymorphism and risk of these esophageal conditions. Our study suggests that the COX-2 8473 C allele is a potential genetic marker for susceptibility to esophageal adenocarcinoma.
Resumo:
BACKGROUND:
Aurora kinases play an essential role in the orchestration of chromosome separation and cytokinesis during mitosis. Small-molecule inhibition of the aurora kinases has been shown to result in inhibition of cell division, phosphorylation of histone H3 and the induction of apoptosis in a number of cell systems. These characteristics have led aurora kinase inhibitors to be considered as potential therapeutic agents.
DESIGN AND METHODS:
Aurora kinase gene expression profiles were assessed in 101 samples from patients with acute myeloid leukemia. Subsequently, aurora kinase inhibitors were investigated for their in vitro effects on cell viability, histone H3 phosphorylation, cell cycle and morphology in acute myeloid leukemia cell lines and primary acute myeloid leukemia samples.
RESULTS:
The aurora kinase inhibitors AZD1152-HQPA and ZM447439 induced growth arrest and the accumulation of hyperploid cells in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. Furthermore, both agents inhibited histone H3 phosphorylation and this preceded perturbations in cell cycle and the induction of apoptosis. Single cell cloning assays were performed on diploid and polyploid cells to investigate their colony-forming capacities. Although the polyploid cells showed a reduced capacity for colony formation when compared with their diploid counterparts, they were consistently able to form colonies.
CONCLUSIONS:
AZD1152-HQPA- and ZM447439 are effective apoptosis-inducing agents in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. However, their propensity to induce polyploidy does not inevitably result in apoptosis.
Resumo:
The proteasome is a multicatalytic enzyme complex responsible for the regulated degradation of intracellular proteins. In recent years, inhibition of proteasome function has emerged as a novel anti-cancer therapy. Proteasome inhibition is now established as an effective treatment for relapsed and refractory multiple myeloma and offers great promise for the treatment of other haematological malignancies, when used in combination with conventional therapeutic agents. Bortezomib is the first proteasome inhibitor to be used clinically and a second generation of proteasome inhibitors with differential pharmacological properties are currently in early clinical trials. This review summarises the development of proteasome inhibitors as therapeutic agents and describes how novel assays for measuring proteasome activity and inhibition may help to further delineate the mechanisms of action of different proteasome inhibitors. This will allow for the optimized use of proteasome inhibitors in combination therapies and provide the opportunity to design more potent and therapeutically efficacious proteasome inhibitors.
Resumo:
The structural diversity of polypeptides in amphibian skin secretion probably reflects different roles in dermal regulation or in defense against predators. Here we report the structures of two novel trypsin inhibitor analogs, BOTI and BVTI, from the dermal venom of the toads, Bombina orientalis and Bombina variegata. Cloning of their respective precursors was achieved from lyophilized venom cDNA libraries for the first time. Amino acid alignment revealed that both deduced peptides, consisting of 60 amino acid residues, including 10 cysteines and the reactive center motif, -CDKKC-, can be affirmed as structural homologs of the trypsin inhibitor from Bombina bombina skin.